Background Growing evidence has indicated that tumor-associated macrophages (TAMs) promote tumor angiogenesis. However, the mechanisms underlying the pro-angiogenic switch of TAMs remains unclear. Here, we examined how exosomal miR-301a-3p secreted by esophageal squamous cell carcinoma (ESCC) cells triggers the pro-angiogenic switch of TAMs. Methods We quantified miR-301a-3p levels in ESCC tumors using qRT-PCR. Macrophage phenotypes were identified using flow cytometry and qRT-PCR. The pro-angiogenic ability of TAMs was measured using the CCK-8 assay, scratch assay, Transwell migration and invasion assay, and tube formation assay. The mechanism by which exosomal miR-301a-3p secreted by ESCC cells triggers the pro-angiogenic switch of TAMs was elucidated using western blots, qRT-PCR, and a dual-luciferase reporter assay. Results We observed anomalous miR-301a-3p overexpression in ESCC tumor tissues and cell lines. Then, we verified that ESCC-derived exosomes promoted angiogenesis by inducing macrophage polarization into M2 type, and exosomal miR-301a-3p secreted by ESCC cells was responsible for this effect. Finally, we discovered that exosomal miR-301a-3p promoted M2 macrophage polarization via the inhibition of PTEN and activation of the PI3K/AKT signaling pathway, subsequently promoting angiogenesis via the secretion of VEGFA and MMP9. Conclusion The pro-angiogenic switch of TAMs is triggered by exosomal miR-301a-3p secreted from ESCC cells via the PTEN/PI3K/AKT signaling pathway. Although tumor angiogenesis can be regulated by a wide range of factors, exosomal miR-301a-3p could hold promise as a novel anti-angiogenesis target for ESCC treatment.
Purpose. The incidence of papillary thyroid cancer (PTC) is increasing, and traditional diagnostic methods are unsatisfactory. Therefore, identifying novel prognostic markers is very important. ciRS-7 has been found to play an important role in many cancers, but its role in PTC has not been reported. This study was performed to evaluate the biological role and mechanism of ciRS-7 in PTC. Material and Methods. The expression of ciRS-7 in PTC tissues and the matched adjacent tissues was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The PTC cell lines (TPC-1 and BCPAP) were used to evaluate the role of ciRS-7. ciRS-7-siRNA and overexpression plasmid were constructed and transfected into PTC cells. A CCK-8 assay and colony formation assay were performed to explore the effects of ciRS-7 on cell proliferation. Annexin V/PI staining and FACS detection were used to detect cell apoptosis. Wound healing assay was performed to detect cell migration. A transwell assay was conducted to explore the effects of ciRS-7 on invasion and migration. Western blotting was performed to evaluate protein expression. The luciferase reporter system was used to determine the underlying mechanism of miR-7. Result. ciRS-7 was highly expressed in PTC tissues and cell lines compared with the corresponding controls. In vitro study showed that ciRS-7 silencing suppressed proliferation, migration, and invasion of TPC-1 and BCPAP. Mechanistically, the effects of ciRS-7 on invasion and migration may be related to epithelial-mesenchymal transition (EMT). ciRS-7 silencing could attenuate effects on PTC cells induced by miR-7 knockdown. Epidermal growth factor receptor (EGFR), which was demonstrated to be a target of miR-7, decreased significantly in ciRS-7-siRNA PTC cells. Overexpression of EGFR also attenuated effects of PTC cells induced by silencing ciRS-7. Conclusion. ciRS-7 was significantly upregulated in PTC tissues, and it promoted the progression of PTC by regulating the miR-7/EGFR axis. ciRS-7 is a promising prognostic biomarker and therapeutic target in PTC.
Three-dimensional metal waveguide components are key components in the next generation of radio telescopes. Ultrasonic additive manufacturing technology combining ultrasonic welding and micro electrical discharge machining (micro-EDM) provides a new method for the overall manufacturing of waveguide elements, and the effective welding of Electrolytic Tough Pitch copper (Cu-ETP) sheets is the key process of this method. This study demonstrates that the orthogonal test optimization method is used to conduct ultrasonic welding tests on Cu-ETP. Specifically, electron backscattered diffraction (EBSD) technology is used to analyze the crystal grains, grain boundary types and texture changes during interface recrystallization. In addition, the finite element software ABAQUS 6.13 is employed to calculate the temperature field in order to determine the possibility of recrystallization of the welding interface. The results showed that the average grain size of the welding interface decreased from 20 to 1~2 μm. The Cu-ETP matrix is mainly composed of coarse grains with high-angle grain boundaries (HAGBs), while a large number of low-angle grain boundaries (LAGBs), subcrystals and fine equiaxed grains appear in the welded joint. At the same time, discontinuous dynamic recrystallization (DDRX) occurs in the less strained area, and continuous dynamic recrystallization (CDRX) is predominant in the greater strain area. The temperature field calculation shows that the peak temperature of the welding interface exceeds the recrystallization temperature of Cu-ETP from 379.05 to 433.2 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.