Set queries are fundamental operations in computer systems and applications. This paper addresses the fundamental problem of designing a probabilistic data structure that can quickly process set queries using a small amount of memory. We propose a Shifting Bloom Filter (ShBF) framework for representing and querying sets. We demonstrate the effectiveness of ShBF using three types of popular set queries: membership, association, and multiplicity queries. The key novelty of ShBF is on encoding the auxiliary information of a set element in a location offset. In contrast, prior BF based set data structures allocate additional memory to store auxiliary information. To evaluate ShBF in comparison with prior art, we conducted experiments using real-world network traces. Results show that ShBF significantly advances the state-of-the-art on all three types of set queries.
The Forwarding Information Base (FIB) of backbone routers has been rapidly growing in size. An ideal IP lookup algorithm should achieve constant, yet small, IP lookup time and on-chip memory usage. However, no prior IP lookup algorithm achieves both requirements at the same time. In this paper, we first propose SAIL, a Splitting Approach to IP Lookup. One splitting is along the dimension of the lookup process, namely finding the prefix length and finding the next hop, and another splitting is along the dimension of prefix length, namely IP lookup on prefixes of length less than or equal to 24 and IP lookup on prefixes of length longer than 24. Second, we propose a suite of algorithms for IP lookup based on our SAIL framework. Third, we implemented our algorithms on four platforms: CPU, FPGA, GPU, and many-core. We conducted extensive experiments to evaluate our algorithms using real FIBs and real traffic from a major ISP in China. Experimental results show that our SAIL algorithms are several times or even two orders of magnitude faster than well known IP lookup algorithms.
The Forwarding Information Base (FIB) of backbone routers has been rapidly growing in size. An ideal IP lookup algorithm should achieve constant, yet small, IP lookup time and on-chip memory usage. However, no prior IP lookup algorithm achieves both requirements at the same time. In this paper, we first propose SAIL, a Splitting Approach to IP Lookup. One splitting is along the dimension of the lookup process, namely finding the prefix length and finding the next hop, and another splitting is along the dimension of prefix length, namely IP lookup on prefixes of length less than or equal to 24 and IP lookup on prefixes of length longer than 24. Second, we propose a suite of algorithms for IP lookup based on our SAIL framework. Third, we implemented our algorithms on four platforms: CPU, FPGA, GPU, and many-core. We conducted extensive experiments to evaluate our algorithms using real FIBs and real traffic from a major ISP in China. Experimental results show that our SAIL algorithms are several times or even two orders of magnitude faster than well known IP lookup algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.