Benefitting from the flexibility in engineering their optical response, metamaterials have been used to achieve control over the propagation of light to an unprecedented level, leading to highly unconventional and versatile optical functionalities compared with their natural counterparts. Recently, the emerging field of metasurfaces, which consist of a monolayer of photonic artificial atoms, has offered attractive functionalities for shaping wave fronts of light by introducing an abrupt interfacial phase discontinuity. Here we realize three-dimensional holography by using metasurfaces made of subwavelength metallic nanorods with spatially varying orientations. The phase discontinuity takes place when the helicity of incident circularly polarized light is reversed. As the phase can be continuously controlled in each subwavelength unit cell by the rod orientation, metasurfaces represent a new route towards high-resolution on-axis three-dimensional holograms with a wide field of view. In addition, the undesired effect of multiple diffraction orders usually accompanying holography is eliminated.
Surface topography and refractive index profile dictate the deterministic functionality of a lens. The polarity of most lenses reported so far, that is, either positive (convex) or negative (concave), depends on the curvatures of the interfaces. Here we experimentally demonstrate a counter-intuitive dual-polarity flat lens based on helicity-dependent phase discontinuities for circularly polarized light. Specifically, by controlling the helicity of the input light, the positive and negative polarity are interchangeable in one identical flat lens. Helicity-controllable real and virtual focal planes, as well as magnified and demagnified imaging, are observed on the same plasmonic lens at visible and near-infrared wavelengths. The plasmonic metalens with dual polarity may empower advanced research and applications in helicity-dependent focusing and imaging devices, angular-momentum-based quantum information processing and integrated nano-optoelectronics.
Ultrathin metasurfaces consisting of a monolayer of subwavelength plasmonic resonators are capable of generating local abrupt phase changes and can be used for controlling the wavefront of electromagnetic waves. The phase change occurs for transmitted or reflected wave components whose polarization is orthogonal to that of a linearly polarized (LP) incident wave. As the phase shift relies on the resonant features of the plasmonic structures, it is in general wavelength-dependent. Here, we investigate the interaction of circularly polarized (CP) light at an interface composed of a dipole antenna array to create spatially varying abrupt phase discontinuities. The phase discontinuity is dispersionless, that is, it solely depends on the orientation of dipole antennas, but not their spectral response and the wavelength of incident light. By arranging the antennas in an array with a constant phase gradient along the interface, the phenomenon of broadband anomalous refraction is observed ranging from visible to near-infrared wavelengths. We further design and experimentally demonstrate an ultrathin phase gradient interface to generate a broadband optical vortex beam based on the above principle.
Surface plasmon polaritons (SPPs) have been widely exploited in various scientific communities, ranging from physics, chemistry to biology, due to the strong confinement of light to the metal surface. For many applications, it is important that the free space photon can be coupled to SPPs in a controllable manner. In this Letter, we apply the concept of interfacial phase discontinuity for circularly polarizations on a metasurface to the design of a novel type of polarization-dependent SPP unidirectional excitation at normal incidence. Selective unidirectional excitation of SPPs along opposite directions is experimentally demonstrated at optical frequencies by simply switching the helicity of the incident light. This approach, in conjunction with dynamic polarization modulation techniques, opens gateway towards integrated plasmonic circuits with electrically reconfigurable functionalities.
Structured light projection is a widely adopted approach for depth perception in consumer electronics and other machine vision systems. Diffractive optical element (DOE) is a key component for structured light projection that redistributes a collimated laser beam to a spot array with uniform intensity. Conventional DOEs for laser spot projection are binary-phase gratings, suffering from low efficiency and low uniformity when designed for a large field of view (FOV). Here, by combining vectorial electromagnetic simulation and interior-point method for optimization, we experimentally demonstrate polarization-independent silicon-based metasurfaces that can project a collimated laser beam to a spot array in the far-field with an exceedingly large FOV over 120° × 120°. The metasurface DOE with large FOV may benefit a number of depth perception-related applications such as face-unlock and motion sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.