In light of the intense recent interest in the methylammonium lead halides, CHNHPbX (X = Cl, Br, and I) as sensitizers for photovoltaic cells, the dynamics of the methylammonium (MA) cation in these perovskite salts has been reinvestigated as a function of temperature via H,N, and Pb NMR spectroscopy. In the cubic phase of all three salts, the MA cation undergoes pseudoisotropic tumbling (picosecond time scale). For example, the correlation time, τ, for the C-N axis of the iodide salt is 0.85 ± 0.30 ps at 330 K. The dynamics of the MA cation are essentially continuous across the cubic ↔ tetragonal phase transition; however, H andN NMR line shapes indicate that subtle ordering of the MA cation occurs in the tetragonal phase. The temperature dependence of the cation ordering is rationalized using a six-site model, with two equivalent sites along the c-axis and four equivalent sites either perpendicular or approximately perpendicular to this axis. As the cubic ↔ tetragonal phase transition temperature is approached, the six sites are nearly equally populated. Below the tetragonal ↔ orthorhombic phase transition, H NMR line shapes indicate that the C-N axis is essentially frozen.
We report a combined solid-state (H, H,C, O) NMR and plane-wave density functional theory (DFT) computational study of the O···H···O low-barrier hydrogen bonds (LBHBs) in two 1,3-diketone compounds: dibenzoylmethane (1) and curcumin (2). In the solid state, both 1 and 2 exist in the cis-keto-enol tautomeric form, each exhibiting an intramolecular LBHB with a short O···O distance (2.435 Å in 1 and 2.455 Å in 2). Whereas numerous experimental (structural and spectroscopic) and computational studies have been reported for the enol isomers of 1,3-diketones, a unified picture about the proton location within an LBHB is still lacking. This work reports for the first time the solid-stateO NMR data for the O···H···O LBHBs in 1,3-diketones. The central conclusion of this work is that detailed information about the probability density distribution of the proton (nuclear zero-point motion) across an LBHB can be obtained from a combination of solid-state NMR and plane-wave DFT computations (both NMR parameter calculations and ab initio molecular dynamics simulations). We propose that the precise proton probability distribution across an LBHB should provide a common basis on which different and sometimes seemingly contradicting experimental results obtained from complementary techniques, such as X-ray diffraction, neutron diffraction, and solid-state NMR, can be reconciled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.