Recently, strong polymer-based hydrogels have been intensively investigated. However, the development of tough protein hydrogels with controlled degradation for bone regeneration has rarely been reported. Here, regenerated silk fibroin/gelatin (RSF/G) hydrogels with both strength and controlled degradation are prepared via physically and chemically double-crosslinked networks. As a representative example, the 9%RSF/3%G hydrogel shows approximately 80% elongation and a compressive and tensile modulus of up to 0.25 and 0.21 MPa, respectively. It also shows a degradation rate that can be adjusted to approximately three months in vivo, a value between that of the rapidly degrading gelatin hydrogel and the slowly degrading RSF hydrogel. The 9%RSF/3%G hydrogel has good biocompatibility and promotes the proliferation and differentiation of bone marrow-derived stem cells compared with the control and pure RSF hydrogels. At 12 weeks after implantation of the gel in a calvarial defect, micro-computed tomography shows greater bone volume and bone mineral density in the 9%RSF/3%G group. More importantly, histology reveals more mineralization and enhancements in the quality and rate of bone regeneration with less of a tissue response in the 9%RSF/3%G group. These results indicate the promising potential of this tough protein hydrogel with controlled degradation for bone regeneration applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.