Photoaffinity labeling (PAL) in combination with a chemical probe to covalently bind its target upon UV irradiation has demonstrated considerable promise in drug discovery for identifying new drug targets and binding sites. In particular, carbene-mediated photoaffinity labeling (cmPAL) has been widely used in drug target identification owing to its excellent photolabeling efficiency, minimal steric interference and longer excitation wavelength.Specifically, diazirines, which are among the precursors of carbenes and have higher carbene yields and greater chemical stability than diazo compounds, have proved to be valuable photolabile reagents in a diverse range of biological systems. This review highlights current advances of cmPAL in medicinal chemistry, with a focus on structures and applications for identifying small molecule-protein and macromolecule-protein interactions and ligand-gated ion channels, coupled with advances in the discovery of targets and inhibitors using carbene precursor-based biological probes developed in recent decades.
Recent observations on the emergence of drug-resistant plant pathogenic bacteria have highlighted and elicited an acute campaign to develop novel, highly efficient antibiotic surrogates for managing bacterial diseases in agriculture. Thus, a type of racemic and chiral carbazole derivative containing an isopropanolamine pattern was systematically synthesized to discover low-cost and efficient antibacterial candidates. Screening results showed that compounds 2f, 6c, and 2j could significantly suppress the growth of tested plant pathogens, namely Xanthomonas oryzae pv oryzae, X. axonopodis pv citri, and Pseudomonas syringae pv actinidiae, and provided the corresponding EC 50 values of 1.27, 0.993, and 0.603 μg/mL, which were significantly better than those of existing commercial drugs. In vivo studies confirmed their prospective applications for controlling plant bacterial diseases. Label-free quantitative proteomics analysis indicated that compound 2f could dramatically induce the up-and down-regulation of a total of 247 differentially expressed proteins, which was further validated by the parallel reaction monitoring technique. Moreover, fluorescence spectra and SEM images were obtained to further explore the antibacterial mechanism.
A novel series of simple 1,3,4-oxadiazoles that bear flexible heterocyclic patterns was prepared, and their biological activities in plant pathogenic bacteria, fungi, oomycetes, and Meloidogyne incognita in vitro and in vivo were screened to explore low-cost and versatile antimicrobial agents. Screening results showed that compounds, such as A 0 , B 0 , and C 4 , were bioactive against Xanthomonas oryzae pv oryzae in vitro and in vivo, and such bioactivities were superior to those of commercial agents bismerthiazol and thiodiazole copper. Their antibacterial mechanisms were further investigated by quantitative proteomics and concentration-dependent scanning electron microscopy images. Antifungal results indicated that compound A 0 displayed a selective and better antifungal effect on Botrytis cinerea with inhibition rate of 96.8% at 50 μg/mL. Nematocidal bioassays suggested that compound D 1 had good in vitro nematocidal activity toward M. incognita at 24, 48, and 72 h, with the corresponding insecticidal efficiency of 48.7%, 64.1%, and 87.2% at 40 μg/mL. In vivo study further confirmed that compounds D 1 and F 2 showed nematocidal actions at 80 μg/mL with a disease index of 1.5. Given these advantages, this kind of molecular frameworks could be a suitable platform for exploring highly efficient agrochemicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.