Activation of the serine-threonine kinase Akt promotes the survival and proliferation of various cancers. Hypoxia promotes the resistance of tumor cells to specific therapies. We therefore explored a possible link between hypoxia and Akt activity. We found that Akt was prolyl-hydroxylated by the oxygen-dependent hydroxylase EglN1. The von Hippel–Lindau protein (pVHL) bound directly to hydroxylated Akt and inhibited Akt activity. In cells lacking oxygen or functional pVHL, Akt was activated to promote cell survival and tumorigenesis. We also identified cancer-associated Akt mutations that impair Akt hydroxylation and subsequent recognition by pVHL, thus leading to Akt hyperactivation. Our results show that microenvironmental changes, such as hypoxia, can affect tumor behaviors by altering Akt activation, which has a critical role in tumor growth and therapeutic resistance.
Adenosine deaminases acting on RNA (ADARs) are the primary factors underlying adenosine to inosine (A-to-I) editing in metazoans. Here we report the first global study of ADAR1-RNA interaction in human cells using CLIP-Seq. A large number of CLIP sites are observed in Alu repeats, consistent with ADAR1's function in RNA editing. Surprisingly, thousands of other CLIP sites are located in non-Alu regions, revealing functional and biophysical targets of ADAR1 in the regulation of alternative 3' UTR usage and miRNA biogenesis. We observe that binding of ADAR1 to 3' UTRs precludes binding by other factors, causing 3' UTR lengthening. Similarly, ADAR1 interacts with DROSHA and DGCR8 in the nucleus and possibly out-competes DGCR8 in primary miRNA binding, which enhances mature miRNA expression. These functions are dependent on ADAR1's editing activity, at least for a subset of targets. Our study unfolds a broad landscape of the functional roles of ADAR1.
Orthotopic liver transplantation (OLT) is the only curative therapy of HCC with underlying cirrhosis, but due to HCC metastasis and recurrence, its benefit is limited to a small population who meet the strict selection criteria. We previously reported that Licartin ([ 131 I]mAb HAb18G/CD147) was safe and effective in treating HCC patients, and its antigen, HAb18G/ CD147, was closely related to HCC invasion and metastasis. Here, we reported a randomized controlled trial to assess the post-OLT antirecurrence efficacy of Licartin in advanced HCC patients. We randomized 60 post-OLT patients with HCC, who were at tumor stage 3/4 and outside the Milan criteria before OLT, into 2 groups. Three weeks after OLT, the treatment group received 15.4 MBq/kg of Licartin, while the control group received placebo intravenously for 3 times with an interval of 28 days. At 1-year follow-up, the recurrence rate significantly decreased by 30.4% (P ؍ 0.0174) and the survival rate increased by 20.6% (P ؍ 0.0289) in the treatment group, compared with those in the control group. For the control group versus the treatment group, the hazard ratio for recurrence H epatocellular carcinoma is the most common type of primary liver cancer and ranks sixth among cancers as a cause of death worldwide. 1 It is a highly malignant tumor characterized by rapid progression, poor prognosis, and frequent tumor recurrence. It has an annual incidence rate of 564,000 cases, and 55% of those are in China. 2 The mean natural survival time was reported to be only 3-6 months due to the rapid progression of tumor, especially the spread and metastasis. 3,4 Surgery is the preferred treatment, but less than 20% of patients have the chance to be treated surgically Abbreviations: AFP, alpha fetoprotein; CI, confidence interval; DBIL, direct bilirubin; mAb, monoclonal antibody; OLT, orthotopic liver transplantation; TNM, tumor-nodes-metastasis. From the
BackgroundElucidation of the repertoire of secreted and cell surface proteins of tumor cells is relevant to molecular diagnostics, tumor imaging and targeted therapies. We have characterized the cell surface proteome and the proteins released into the extra-cellular milieu of three ovarian cancer cell lines, CaOV3, OVCAR3 and ES2 and of ovarian tumor cells enriched from ascites fluid.Methodology and FindingsTo differentiate proteins released into the media from protein constituents of media utilized for culture, cells were grown in the presence of [13C]-labeled lysine. A biotinylation-based approach was used to capture cell surface associated proteins. Our general experimental strategy consisted of fractionation of proteins from individual compartments followed by proteolytic digestion and LC-MS/MS analysis. In total, some 6,400 proteins were identified with high confidence across all specimens and fractions.Conclusions and SignificanceProtein profiles of the cell lines had substantial similarity to the profiles of human ovarian cancer cells from ascites fluid and included protein markers known to be associated with ovarian cancer. Proteomic analysis indicated extensive shedding from extra-cellular domains of proteins expressed on the cell surface, and remarkably high secretion rates for some proteins (nanograms per million cells per hour). Cell surface and secreted proteins identified by in-depth proteomic profiling of ovarian cancer cells may provide new targets for diagnosis and therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.