The bromodomain and extra-terminal (BET) family of proteins, comprised of four members including BRD2, BRD3, BRD4 and the testis-specific isoform BRDT, largely function as transcriptional co-activators 1–3 and play critical roles in various cellular processes, including cell cycle, apoptosis, migration and invasion 4,5. As such, BET proteins enhance the oncogenic functions of major cancer drivers by either elevating their expression such as c-Myc in leukemia 6,7 or by promoting transcriptional activities of oncogenic factors such as AR and ERG in the prostate cancer setting 8. Pathologically, BET proteins are frequently overexpressed and clinically linked to various types of human cancers 5,9,10, therefore pursued as attractive therapeutic targets for selective inhibition in patients. To this end, a number of bromodomain inhibitors, including JQ1 and I-BET, have been developed 11,12 and shown promising outcomes in early clinical trials. Despite resistance to BET inhibitor has been documented in pre-clinical models 13–15 the molecular mechanisms underlying acquired resistance are largely unknown. Here, we report that Cullin 3SPOP earmarks BET proteins including BRD2, BRD3 and BRD4 for ubiquitination-mediated degradation. Pathologically, prostate cancer-associated SPOP mutants fail to interact with and promote the destruction of BET proteins, leading to their elevated abundance in SPOP-deficient prostate cancer. As a result, prostate cancer cells and prostate cancer patient-derived organoids harboring SPOP mutations are more resistant to BET inhibitor-induced cell growth arrest and apoptosis. Therefore, our results elucidate the tumor suppressor role of SPOP in prostate cancer by negatively controlling BET protein stability, and also provide a molecular mechanism for BET inhibitor resistance in prostate cancer patients bearing SPOP mutations.
Summary Androgen receptor (AR) signaling is a key driver of prostate cancer (PC). While androgen-deprivation therapy is transiently effective in advanced disease, tumors often progress to a lethal castration-resistant state (CRPC). We show that recurrent PC-driver mutations in SPOP stabilize the TRIM24 protein, which promotes proliferation under low androgen conditions. TRIM24 augments AR signaling, and AR and TRIM24 co-activated genes are significantly up-regulated in CRPC. Expression of TRIM24 protein increases from primary PC to CRPC, and both TRIM24 protein levels and the AR/TRIM24 gene signature predict disease-recurrence. Analyses in CRPC cells reveal that the TRIM24 bromodomain and the AR-interacting motif are essential to support proliferation. These data provide a rationale for therapeutic TRIM24 targeting in SPOP-mutant and CRPC patients.
Reproducible research is the bedrock of experimental science. To enable the deployment of large-scale proteomics, we assess the reproducibility of mass spectrometry (MS) over time and across instruments and develop computational methods for improving quantitative accuracy. We perform 1560 data independent acquisition (DIA)-MS runs of eight samples containing known proportions of ovarian and prostate cancer tissue and yeast, or control HEK293T cells. Replicates are run on six mass spectrometers operating continuously with varying maintenance schedules over four months, interspersed with~5000 other runs. We utilise negative controls and replicates to remove unwanted variation and enhance biological signal, outperforming existing methods. We also design a method for reducing missing values. Integrating these computational modules into a pipeline (ProNorM), we mitigate variation among instruments over time and accurately predict tissue proportions. We demonstrate how to improve the quantitative analysis of large-scale DIA-MS data, providing a pathway toward clinical proteomics.
Formalin-fixed, paraffin-embedded (FFPE), biobanked tissue samples offer an invaluable resource for clinical and biomarker research. Here, we developed a pressure cycling technology (PCT)-SWATH mass spectrometry workflow to analyze FFPE tissue proteomes and applied it to the stratification of prostate cancer (PCa) and diffuse large B-cell lymphoma (DLBCL) samples. We show that the proteome patterns of FFPE PCa tissue samples and their analogous fresh-frozen (FF) counterparts have a high degree of similarity and we confirmed multiple proteins consistently regulated in PCa tissues in an independent sample cohort. We further demonstrate temporal stability of proteome patterns from FFPE samples that were stored Abbreviations BPH, benign prostatic hyperplasia; CRYAB, crystallin alpha Bbetween 1 and 15 years in a biobank and show a high degree of the proteome pattern similarity between two types of histological regions in small FFPE samples, that is, punched tissue biopsies and thin tissue sections of micrometer thickness, despite the existence of a certain degree of biological variations. Applying the method to two independent DLBCL cohorts, we identified myeloperoxidase, a peroxidase enzyme, as a novel prognostic marker. In summary, this study presents a robust proteomic method to analyze bulk and biopsy FFPE tissues and reports the first systematic comparison of proteome maps generated from FFPE and FF samples. Our data demonstrate the practicality and superiority of FFPE over FF samples for proteome in biomarker discovery. Promising biomarker candidates for PCa and DLBCL have been discovered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.