This study aimed to generate a mouse model of acquired glomerular sclerosis. A model system that allows induction of podocyte injury in a manner in which onset and severity can be controlled was designed. A transgenic mouse strain (NEP25) that expresses human CD25 selectively in podocytes was first generated. Injection of anti-Tac (Fv)-PE38 (LMB2), an immunotoxin with specific binding to human CD25, induced progressive nonselective proteinuria, ascites, and edema in NEP25 mice. Podocytes showed foot process effacement, vacuolar degeneration, detachment and downregulation of synaptopodin, WT-1, nephrin, and podocalyxin. Mesangial cells showed matrix expansion, increased collagen, mesangiolysis, and, later, sclerosis. Parietal epithelial cells showed vacuolar degeneration and proliferation, whereas endothelial cells were swollen. The severity of the glomerular injury was LMB2 dose dependent. With 1.25 ng/g body wt or more, NEP25 mice developed progressive glomerular damage and died within 2 wk. With 0.625 ng/g body wt of LMB2, NEP25 mice survived >4 wk and developed focal segmental glomerular sclerosis. Thus, the study has established a mouse model of acquired progressive glomerular sclerosis in which onset and severity can be preprogrammed by experimental maneuvers.
Recombinant immunotoxins are hybrid proteins composed of an Fv that binds to a tumor antigen fused to a bacterial or plant toxin. Immunotoxin BL22 targets CD22 positive malignancies and is composed of an anti-CD22 Fv fused to a 38-kDa fragment of Pseudomonas exotoxin A (PE38). BL22 has produced many complete remissions in drug-resistant Hairy cell leukemia, where many treatment cycles can be given, because neutralizing antibodies do not form. In marked contrast, only minor responses have been observed in trials with immunotoxins targeting solid tumors, because only a single treatment cycle can be given before antibodies develop. To allow more treatment cycles and increase efficacy, we have produced a less immunogenic immunotoxin by identifying and eliminating most of the B cell epitopes on PE38. This was accomplished by mutation of specific large hydrophilic amino acids (Arg, Gln, Glu, Lys) to Ala, Ser, or Gly. The new immunotoxin (HA22-8X) is significantly less immunogenic in three strains of mice, yet retains full cytotoxic and anti-tumor activities. Elimination of B-cell epitopes is a promising approach to the production of less immunogenic proteins for therapeutic purposes.antibody engineering ͉ BL22 ͉ HA22 ͉ immunotherapy ͉ Pseudomonas exotoxin A I mmunotoxins (ITs) are hybrid proteins that are composed of a cancer-specific antibody attached to a bacterial or plant toxin (1). Initially ITs were made by chemically coupling toxins to whole antibodies. Now they are made using a combination of antibody and protein engineering (2, 3). ITs kill cells by binding to a cell surface protein, being internalized by endocytosis and eventually reaching the cytosol, where they arrest protein synthesis by inactivating EF2 or ribosomes (4, 5). Our laboratory has developed recombinant immunotoxins (RITs) in which the Fv portion of an antibody is directly fused to a 38-kDa portion of the bacterial toxin Pseudomonas exotoxin A (PE). Three RITs are currently in clinical trials and all three have shown anti-tumor activity in phase 1 trials. LMB-2 [anti-Tac-(Fv)-PE38] targets CD25 expressed on many T cell malignancies and some B cell malignancies (6). BL22 [anti-CD22-(Fv)-PE38] targets CD22 expressed on most B cell malignancies (7), and SS1P antimesothelin-(Fv)-PE38 targets the mesothelin antigen expressed on mesotheliomas and on ovarian, lung, pancreatic, and gastric cancers (8). Because these ITs contain a portion of a bacterial protein, they can induce the formation of neutralizing antibodies, hindering their efficacy. In patients with B-and T-cell malignancies the formation of neutralizing antibodies is infrequent because of the immune-suppressed state of patients with these malignancies (6, 7). However, in patients with solid tumors treated with SS1P and other ITs, antibody formation was very frequently detected 21 days after the first treatment cycle, preventing readministration of the IT (9).Previous studies have shown that the formation of antibodies to foreign proteins can be prevented by coupling the protein to high-mol...
Purpose: Mesothelin is a glycosyl-phosphatidylinositol^anchored glycoprotein present on the cell surface. Mesothelin is a differentiation antigen that is highly expressed on mesothelioma, ovarian cancer, and pancreatic cancer. The existence of a spontaneous humoral immune response to mesothelin in humans has not been fully studied. Here we addressed the issue of whether mesothelin elicits a humoral immune response in patients with mesothelioma and ovarian cancer. Experimental Design: Using an ELISA, we analyzed immunoglobulin G antibodies specific for mesothelin in sera from patients with mesothelioma and epithelial ovarian cancer. Tumor specimens were examined by immunohistochemistry for mesothelin protein expression. Results: Elevated levels of mesothelin-specific antibodies were detected in the sera of 39.1% of patients with mesothelioma (27 of 69 patients) and 41.7% with epithelial ovarian cancer (10 of 24 patients) when compared with a normal control population (44 blood donors; P < 0.01 for both mesothelioma and ovarian cancer). We also found that 53% to 56% of patients with mesothelin immunostaining-positive mesothelioma and ovarian cancer had antibodies specific for mesothelin, whereas only 0% to 8% of patients with negative mesothelin immunostaining had detectable mesothelin-specific antibodies (c 2 test: P < 0.01for mesothelioma and P = 0.025 for ovarian cancer). Conclusions: Our findings indicate that mesothelin is a new tumor antigen in patients with mesothelioma and ovarian cancer and the immunogenicity of mesothelin is associated with its high expression on the tumor cells. Mesothelin represents an excellent target for immunebased therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.