We report a hybrid reduced graphene oxide (rGO)-loaded ultrasmall plasmonic gold nanorod vesicle (rGO-AuNRVe) (~65 nm in size) with remarkably amplified photoacoustic (PA) performance and photothermal effects. The hybrid vesicle also exhibits a high loading capacity of doxorubicin (DOX), as both the cavity of the vesicle and the large surface area of the encapsulated rGO can be used for loading DOX, making it an excellent drug carrier. The loaded DOX is released sequentially: near-infrared photothermal heating induces DOX release from the vesicular cavity, and an intracellular acidic environment induces DOX release from the rGO surface. Positron emission tomography imaging showed high passive U87MG tumor accumulation of 64Cu-labeled rGO-AuNRVes (~9.7% ID/g at 24 h postinjection) and strong PA signal in the tumor region. Single intravenous injection of rGO-AuNRVe-DOX followed by low-power-density 808 nm laser irradiation (0.25 W/cm2) revealed effective inhibition of tumor growth due to the combination of chemo- and photothermal therapies. The rGO-AuNRVe-DOX capable of sequential DOX release by laser light and acid environment may have the potential for clinical translation to treat cancer patients with tumors accessible by light.
A new kind of ultrasmall dissociable AuNR@PEG/PLGA vesicles (≈60 nm) (AuNR = gold nanorod; PEG = poly(ethylene glycol); PLGA = poly(lactic-co-glycolic acid)) assembled from small AuNRs (dimension: ≈8 nm × 2 nm) is reported. They exhibit several striking features: prolonged circulation and prominent tumor accumulation; rapid excretion from the body as AuNR@PEG after therapy; enhanced photoacoustic and photo thermal properties; and high photothermal cancer therapy efficacy.
Photothermal therapy (PTT) is an emerging treatment modality that is under intensive preclinical investigations for the treatment of various medical conditions, including cancer. However, the lack of targeting function of PTT agents hampers its clinical application. An effective and nontoxic delivery vehicle that can carry PTT agents into tumor areas is still needed urgently. In this study, we developed a multifunctional nanocomposite by loading copper sulfide (CuS) into Cy5.5-conjugated hyaluronic acid nanoparticles (HANP), obtaining an activatable Cy5.5-HANP/CuS (HANPC) nanocomposite. In this system, Cy5.5 fluorescent signal is quenched by CuS inside the particle until the whole nanocomposite is degraded by hyaluronidase present in tumor, giving strong fluorescence signals delineating the tumor. Importantly, CuS with strong NIR absorbance appears to be an excellent contrast agent for photoacoustic (PA) imaging and an effective PTT agent. After intravenous administration of HANPC into SCC7 tumor-bearing mice, high fluorescence and PA signals were observed in the tumor area over time, which peaked at the 6 h time point (tumor-to-normal tissue ratio of 3.25±0.25 for optical imaging and 3.8±0.42 for PA imaging). The tumors were then irradiated with a laser, and a good tumor inhibition rate (89.74% on day 5) was observed. Our studies further encourage application of this HA-based multifunctional nanocomposite for image-guided PTT in biomedical applications, especially in cancer theranostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.