We have established Meloidogyne hapla as a tractable model plant-parasitic nematode amenable to forward and reverse genetics, and we present a complete genome sequence. At 54 Mbp, M. hapla represents not only the smallest nematode genome yet completed, but also the smallest metazoan, and defines a platform to elucidate mechanisms of parasitism by what is the largest uncontrolled group of plant pathogens worldwide. The M. hapla genome encodes significantly fewer genes than does the freeliving nematode Caenorhabditis elegans (most notably through a reduction of odorant receptors and other gene families), yet it has acquired horizontally from other kingdoms numerous genes suspected to be involved in adaptations to parasitism. In some cases, amplification and tandem duplication have occurred with genes suspected of being acquired horizontally and involved in parasitism of plants. Although M. hapla and C. elegans diverged >500 million years ago, many developmental and biochemical pathways, including those for dauer formation and RNAi, are conserved. Although overall genome organization is not conserved, there are areas of microsynteny that may suggest a primary biological function in nematodes for those genes in these areas. This sequence and map represent a wealth of biological information on both the nature of nematode parasitism of plants and its evolution.compaction ͉ dauer ͉ development ͉ horizontal gene transfer ͉ gene N ematodes are an abundant and species-rich animal phylum.They share a common body plan on which various adaptations have evolved, enabling Nematoda to occupy essentially all ecological niches, including being parasites of many other organisms (1). Parasitism of plants appears to have arisen independently in three of the major 12 nematode clades (2) and results in annual losses to world agriculture estimated to exceed $US100 billion (3, 4). The majority of damage is caused by sedentary endoparasitic forms in the order Tylenchida, which includes the root-knot nematodes (Meloidogyne spp., RKN). RKN have a cosmopolitan distribution and a host range that spans most crops, although individual RKN species exhibit a more restricted host range. Mature female RKN release hundreds of eggs onto the surface of the root that hatch in the soil as second-stage larvae (L2) and typically reinfect the same plant. RKN L2 are similar in function to dauer larvae (5), which were first described as an adaptation to parasitism to overcome adverse environmental conditions and facilitate dispersal (6), but have been best studied in the free-living nematode Caenorhabditis elegans (7). These larvae are developmentally arrested, motile, nonfeeding, nonaging, and long-lived. Like C. elegans dauers, RKN L2 are detergent-resistant (5), use the glyoxylate pathway (8), and exhibit intestinal morphology with sparse luminal microvilli and numerous lipid storage vesicles that permit long-term survival in the soil. RKN L2 penetrate the root and migrate intercellularly into the vascular cylinder. Migration is accompanied by extensive ...
Citrate is essential to biomineralization of the bone especially as an integral part of apatite nanocomposite. Citrate precipitate of apatite is hypothesized to be derived from mesenchymal stem/stromal cells (MSCs) upon differentiation into mature osteoblasts. Based on 13C‐labeled signals identified by solid‐state multinuclear magnetic resonance analysis, boosted mitochondrial activity and carbon‐source replenishment of tricarboxylic acid cycle intermediates coordinate to feed forward mitochondrial anabolism and deposition of citrate. Moreover, zinc (Zn2+) is identified playing dual functions: (i) Zn2+ influx is influenced by ZIP1 which is regulated by Runx2 and Osterix to form a zinc‐Runx2/Osterix‐ZIP1 regulation axis promoting osteogenic differentiation; (ii) Zn2+ enhances citrate accumulation and deposition in bone apatite. Furthermore, age‐related bone loss is associated with Zn2+ and citrate homeostasis; whereas, restoration of Zn2+ uptake alleviates age‐associated declining osteogenic capacity and amount of citrate deposition. Together, these results indicate that citrate is not only a key metabolic intermediate meeting the emerging energy demand of differentiating MSCs but also participates in extracellular matrix mineralization, providing mechanistic insight into Zn2+ homeostasis and bone formation.
Aging deteriorates osteogenic capacity of mesenchymal stem/stromal cells (MSCs), contributing to imbalanced bone remodeling and osteoporosis. Glutaminase (Gls) catabolizes glutamine into glutamate at the first step of mitochondrial glutamine (Gln)-dependent anaplerosis which is essential for MSCs upon osteogenic differentiation. Estrogen-related receptor α (ERRα) regulates genes required for mitochondrial function. Here, we found that ERRα and Gls are upregulated by osteogenic induction in human MSCs (hMSCs). In contrast, osteogenic differentiation capacity and glutamine consumption of MSCs, as well as ERRα, Gls and osteogenic marker genes are significantly reduced with age. We demonstrated that ERRα binds to response elements on Gls promoter and affects glutamine anaplerosis through transcriptional induction of Gls. Conversely, mTOR inhibitor rapamycin, ERRα inverse agonist compound 29 or Gls inhibitor BPTES leads to reduced Gln anaplerosis and deteriorated osteogenic differentiation of hMSCs. Importantly, overexpression of ERRα or Gls restored impairment by these inhibitors. Finally, we proved that compensated ERRα or Gls expression indeed potentiated Gln anaplerosis and osteogenic capability of elderly mice MSCs in vitro. Together, we establish that Gls is a novel ERRα target gene and ERRα/Gls signaling pathway plays an important role in osteogenic differentiation of MSCs, providing new sights into novel regenerative therapeutics development. Our findings suggest that restoring age-related mitochondrial Gln-dependent anaplerosis may be beneficial for degenerative bone disorders such as osteoporosis. Stem Cells 2017;35:411-424.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.