Serotonin [5-hydroxytryptamine (5-HT)] is a major therapeutic target of psychiatric disorders. Tryptophan hydroxylase (TPH) catalyzesthe rate-limiting reaction in the biosynthesis of 5-HT. Two isoforms (TPH1 and TPH2) having tryptophan hydroxylating activity were identified. Association studies have revealed possible TPH1 involvement in psychiatric conditions and behavioral traits. However, TPH1 mRNA was reported to be mainly expressed in the pineal gland and the periphery and to be barely detected in the brain. Therefore, contribution of TPH1 to brain 5-HT levels is not known, and the mechanisms how TPH1 possibly contributes to the pathogenesis of psychiatric disorders are not understood. Here, we show an unexpected role of TPH1 in the developing brain. We found that TPH1 is expressed preferentially during the late developmental stage in the mouse brain. TPH1 showed higher affinity to tryptophan and stronger enzyme activity than TPH2 in a condition reflecting that of the developing brainstem. Low 5-HT contents in the raphe nucleus were seen during development in New Zealand white (NZW) and SWR mice having common functional polymorphisms in the TPH1 gene. However, the 5-HT contents in these mice were not reduced in adulthood. In adult NZW and SWR mice, depression-related behavior was observed. Considering an involvement of developmental brain disturbance in psychiatric disorders, TPH1 may act specifically on development of 5-HT neurons, and thereby influence behavior later in life.
Tricheary elements (TEs), wrapped by secondary cell wall, play essential roles in water, mineral, and nutrient transduction. Cadmium (Cd) is a toxic heavy metal that is absorbed by roots and transported to shoot, leaves, and grains through vascular systems in plants. As rice is a major source of Cd intake, many efforts have been made to establish 'low-Cd rice'. However, no links have been found between cellulose biosynthesis and cadmium accumulation. We report here a rice brittle culm13 mutant, resulting from a novel missense mutation (E101K) [corrected] in the N-terminus of cellulose synthase subunit 9 (CESA9). Except for the abnormal mechanical strength, the mutant plants are morphologically indistinguishable from the wild-type plants. Transmission electron microscopy (TEM) and chemical analyses showed a slight reduction in secondary wall thickness and 22% decrease in cellulose content in bc13 plants. Moreover, this mutation unexpectedly confers the mutant plants Cd tolerance due to less Cd accumulation in leaves. Expression analysis of the genes required for Cd uptake and transport revealed complicated alterations after applying Cd to wild-type and bc13. The mutants were further found to have altered vascular structure. More importantly, Cd concentration in the xylem saps from the bc13 plants was significantly lower than that from the wild-type. Combining the analyses of CESA9 gene expression and Cd content retention in the cell-wall residues, we conclude that CESA9(E101K) [corrected] mutation alters cell-wall properties in the conducting tissues, which consequently affects Cd translocation efficiency that largely contributes to the low Cd accumulation in the mutant plants.
The immune and nervous systems display considerable overlap in their molecular repertoire. Molecules originally shown to be critical for immune responses also serve neuronal functions that include normal brain development, neuronal differentiation, synaptic plasticity, and behavior. We show here that Fc␥RIIB, a low-affinity immunoglobulin G Fc receptor, and CD3 are involved in cerebellar functions. Although membranous CD3 and Fc␥RIIB are crucial regulators on different cells in the immune system, both CD3 and Fc␥RIIB are expressed on Purkinje cells in the cerebellum. Both CD3-deficient mice and Fc␥RIIB-deficient mice showed an impaired development of Purkinje neurons. In the adult, rotarod performance of these mutant mice was impaired at high speed. In the two knockout mice, enhanced paired-pulse facilitation of parallel fiberPurkinje cell synapses was shared. These results indicate that diverse immune molecules play critical roles in the functional establishment in the cerebellum.Some molecules originally shown to be critical for immune responses, such as the major histocompatibility complex (MHC) class I molecules, CD3, and semaphorin 7A (3,8,15,23), also serve neuronal functions. Based on studies of mutant mice, CD3 proved critical for the development of lateral geniculate nucleus (LGN) and long-term synaptic plasticity in the adult hippocampus (3,8).In the immune system, CD3 subunits are expressed on T cells. The T-cell receptor (TCR)-CD3 complex recognizing specific antigens bound to MHC present on antigen-presenting cells (APCs) is composed of a TCR heterodimer and CD3 polypeptides organized as dimers. The cell-cell interaction between APCs and T cells is known as an immunological synapse (5) in the mature immune system. In ␣ T cells, when the TCR interacts with the antigen/MHC complex, it transmits information to a signal-transducing complex consisting of two CD3 subunit dimers, CD3ε-CD3␥ and CD3ε-CD3␦, and the CD3-CD3 homodimer (10). Among CD3 subunits, CD3 is a crucial subunit having three immunoreceptor tyrosine-based activation motifs (ITAMs), whereas the remaining subunits have one ITAM (25). Tyrosine residues within these motifs are phosphorylated by src family tyrosine kinases, and then Src homology 2-containing proteins, including the tyrosine kinase ZAP70, participate in signaling (13). The signaling in ␥␦ TCRs is different from that in ␣ TCRs. Most ␥␦ TCRs lack CD3␦, and signal transduction by ␥␦ TCR is superior to that by ␣ TCR, as measured by its ability to induce calcium mobilization, extracellular signal-regulated kinase activation, and cellular proliferation (6).Fc␥RIIB is a low-affinity membrane receptor for immune complexes broadly distributed on hematopoietic cells, such as B cells, mast cells, basophils, macrophages, eosinophils, neutrophils, dendritic cells, and Langerhans cells. Fc␥RIIB negatively regulates B-cell receptor-induced signaling in B cells via the inhibitory immunoreceptor tyrosine-based inhibition motif in its cytoplasmic domain (24,30). Coengagement of the B-cell rece...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.