Alternative polyadenylation (APA) has been shown to play an important role in gene expression regulation in animals and plants. However, the extent of sense and antisense APA at the genome level is not known. We developed a deep-sequencing protocol that queries the junctions of 3′UTR and poly(A) tails and confidently maps the poly(A) tags to the annotated genome. The results of this mapping show that 70% of Arabidopsis genes use more than one poly(A) site, excluding microheterogeneity. Analysis of the poly(A) tags reveal extensive APA in introns and coding sequences, results of which can significantly alter transcript sequences and their encoding proteins. Although the interplay of intron splicing and polyadenylation potentially defines poly(A) site uses in introns, the polyadenylation signals leading to the use of CDS protein-coding region poly(A) sites are distinct from the rest of the genome. Interestingly, a large number of poly(A) sites correspond to putative antisense transcripts that overlap with the promoter of the associated sense transcript, a mode previously demonstrated to regulate sense gene expression. Our results suggest that APA plays a far greater role in gene expression in plants than previously expected.alternative processing | antisense transcription | nonstop mRNAs
Using a novel program, SignalSleuth, and a database containing authenticated polyadenylation [poly(A)] sites, we analyzed the composition of mRNA poly(A) signals in Arabidopsis (Arabidopsis thaliana), and reevaluated previously described cis-elements within the 3#-untranslated (UTR) regions, including near upstream elements and far upstream elements. As predicted, there are absences of high-consensus signal patterns. The AAUAAA signal topped the near upstream elements patterns and was found within the predicted location to only approximately 10% of 3#-UTRs. More importantly, we identified a new set, named cleavage elements, of poly(A) signals flanking both sides of the cleavage site. These cis-elements were not previously revealed by conventional mutagenesis and are contemplated as a cluster of signals for cleavage site recognition. Moreover, a singlenucleotide profile scan on the 3#-UTR regions unveiled a distinct arrangement of alternate stretches of U and A nucleotides, which led to a prediction of the formation of secondary structures. Using an RNA secondary structure prediction program, mFold, we identified three main types of secondary structures on the sequences analyzed. Surprisingly, these observed secondary structures were all interrupted in previously constructed mutations in these regions. These results will enable us to revise the current model of plant poly(A) signals and to develop tools to predict 3#-ends for gene annotation.Messenger RNA polyadenylation is a crucial step during the maturation of most eukaryotic mRNA, in which a polyadenine [poly(A)] tract is added to the cleaved 3#-end of a precursor mRNA (pre-mRNA) posttranscriptionally. Such a modification of mRNA has been shown to affect its stability, translatability, and nuclear-to-cytoplasmic export (Zhao et al., 1999). The posttranscriptional processing of mRNA is an event that has also been found tightly coupled with splicing and transcription termination (Proudfoot et al., 2002;Proudfoot, 2004). Thus, it is an essential processing event and the integral part of gene expression.The polyadenylation process requires two major components: the cis-elements or poly(A) signals of the pre-mRNA, and the trans-acting factors that carry out the cleavage and addition of the poly(A) tail at the 3#-end. These trans-acting factors are a complex of about 25 to 30 proteins involved in signal recognition, cleavage, and polyadenylation (Proudfoot, 2004). These proteins seem to be conserved among eukaryotic organisms. However, the poly(A) signals have been found to differ widely among yeast (Saccharomyces cerevisiae), animals, and plants in terms of signal locations and sequence content. The highly conserved AAUAAA element in mammals becomes a minor signal in plant and yeast genes, and the ubiquitous downstream elements of mammalian pre-mRNAs are nowhere to be found in yeast and plants. The latter two possess an enhancing element located far upstream of the cleavage site (Zhao et al., 1999).Previous understanding of these signal elements was derived mostly...
The adaptive value of transgenerational effects (the ancestor environmental effects on offspring) in changing environments has received much attention in recent years, but the related empirical evidence remains equivocal. Here, we conducted a meta‐analysis summarising 139 experimental studies in plants and animals with 1170 effect sizes to investigate the generality of transgenerational effects across taxa, traits, and environmental contexts. It was found that transgenerational effects generally enhanced offspring performance in response to both stressful and benign conditions. The strongest effects are in annual plants and invertebrates, whereas vertebrates appear to benefit mostly under benign conditions, and perennial plants show hardly any transgenerational responses at all. These differences among taxonomic/life‐history groups possibly reflect that vertebrates can avoid stressful conditions through their mobility, and longer‐lived plants have alternative strategies. In addition to environmental contexts and taxonomic/life‐history groups, transgenerational effects also varied among traits and developmental stages of ancestors and offspring, but the effects were similarly strong across three generations of offspring. By way of a more comprehensive data set and a different effect size, our results differ from those of a recent meta‐analysis, suggesting that transgenerational effects are widespread, strong and persistent and can substantially impact the responses of plants and animals to changing environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.