The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) urgently needs an effective cure. 3CL protease (3CLpro) is a highly conserved cysteine proteinase that is indispensable for coronavirus replication, providing an attractive target for developing broad-spectrum antiviral drugs. Here we describe the discovery of myricetin, a flavonoid found in many food sources, as a non-peptidomimetic and covalent inhibitor of the SARS-CoV-2 3CLpro. Crystal structures of the protease bound with myricetin and its derivatives unexpectedly revealed that the pyrogallol group worked as an electrophile to covalently modify the catalytic cysteine. Kinetic and selectivity characterization together with theoretical calculations comprehensively illustrated the covalent binding mechanism of myricetin with the protease and demonstrated that the pyrogallol can serve as an electrophile warhead. Structure-based optimization of myricetin led to the discovery of derivatives with good antiviral activity and the potential of oral administration. These results provide detailed mechanistic insights into the covalent mode of action by pyrogallol-containing natural products and a template for design of non-peptidomimetic covalent inhibitors against 3CLpros, highlighting the potential of pyrogallol as an alternative warhead in design of targeted covalent ligands.
evere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of coronavirus disease 2019 (COVID-19), with over 84.66 million infections and 1.83 million deaths as reported on 3 January 2021 (refs. 1,2). SARS-CoV-2 is a positive-sense, single-stranded RNA virus. SARS-CoV-2 and several related beta-coronaviruses, including SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), are highly pathogenic. Infections can lead to severe acute respiratory syndrome, loss of lung function and, in severe cases, death. Compared to SARS-CoV and MERS-CoV, SARS-CoV-2 has a higher capacity of human-to-human infections, which resulted in the rapidly growing pandemic 3. Finding an effective treatment for COVID-19, potentially also through drug repurposing, is an urgent but unmet medical need. Suramin (Fig. 1a) is a century-old drug that has been used to treat African sleeping sickness and river blindness 4,5. It has also been shown to be effective in inhibiting the replication of a wide range of viruses, including enteroviruses 6 , Zika virus 7 , Chikungunya 8 and Ebola viruses 9. The viral inhibition mechanisms of suramin are diverse, including inhibition of viral attachment, viral entry and release from host cells in part through interactions with viral capsid proteins 7,8,10,11. Recently, suramin has been shown to inhibit SARS-CoV-2 infection in cell culture by preventing cellular entry of the virus 12. Here we report that suramin is also a potent inhibitor of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), an essential enzyme for the viral life cycle. The potency of suramin in biochemical RdRp inhibition assays is at least 20-fold more potent than remdesivir, the current Food and Drug Administration-approved nucleotide drug for the treatment of COVID-19. The activity of suramin in cell-based viral inhibition is similar to remdesivir because the highly negative charge of suramin prevents efficient cellular uptake. A cryogenic electron microscopy (cryo-EM) structure reveals that suramin binds to the RdRp active site, blocking the binding of both RNA template and primer strands. These results provide a structural template for the design of next generation suramin derivatives as SARS-CoV-2 RdRp inhibitors. Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin Wanchao Yin 1,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.