BackgroundT cell immunoglobulin mucin-3 (Tim-3) has been identified as a negative regulator of anti-tumor immunity. Recent studies highlight the important role of Tim-3 in the CD8+ T cell exhaustion that takes place in both human and animal cancer models. However, the nature of Tim-3 expression in the tumor cell and the mechanism by which it inhibits anti-tumor immunity are unclear. This present study aims to determine Tim-3 is expressed in cervical cancer cells and to evaluate the role of Tim-3 in cervical cancer progression.MethodologyA total of 85 cervical tissue specimens including 43 human cervical cancer, 22 cervical intraepithelial neoplasia (CIN) and 20 chronic cervicitis were involved. Tim-3 expression in tumor cells was detected and was found to correlate with clinicopathological parameters. Meanwhile, expression of Tim-3 was assessed by RT-PCR, Western Blot and confocal microscopy in cervical cancer cell lines, HeLa and SiHa. The migration and invasion potential of Hela cells was evaluated after inhibiting Tim-3 expression by ADV-antisense Tim-3.ConclusionsWe found that Tim-3 was expressed at a higher level in the clinical cervical cancer cells compared to the CIN and chronic cervicitis controls. We supported this finding by confirming the presence of Tim-3 mRNA and protein in the cervical cell lines. Tim-3 expression in tumor cells correlated with clinicopathological parameters. Patients with high expression of Tim-3 had a significant metastatic potential, advanced cancer grades and shorter overall survival than those with lower expression. Multivariate analysis showed that Tim-3 expression was an independent factor for predicting the prognosis of cervical cancer. Significantly, down-regulating the expression of Tim-3 protein inhibited migration and invasion of Hela cells. Our study suggests that the expression of Tim-3 in tumor cells may be an independent prognostic factor for patients with cervical cancer. Moreover, Tim-3 expression may promote metastatic potential in cervical cancers.
Key Points tmTNF-α expressed on LSC and leukemia cells correlates with poor risk stratification and adverse clinical parameters. Targeting tmTNF-α by monoclonal antibody eradicates LSC and blasts, preventing leukemia regeneration in secondary transplant in NOD-SCID mice.
The advent of next generation sequencing (NGS) technologies has expedited the discovery of novel genetic lesions in DLBCL. The prognostic significance of these identified gene mutations is largely unknown. In this study, we performed NGS for the 27 genes most frequently implicated in 196 patients. Interestingly, TP53 mutations were found to be significantly more common in DLBCL with MYC translocations (r = 0.446, P = 0.034). While no gene mutation was found to be more prevalent in patients with DLBCL with bone marrow involvement, MYD88 mutations were more common in primary DLBCL of the CNS or testis. To evaluate the prognostic significance of the abnormalities of these 27 genes, a total of 165 patients with newly diagnosed DLBCL, NOS were included in a multivariate survival analysis. Surprisingly, in addition to the TP53 mutation, CD58 mutation was found to predict poor clinical outcome. Furthermore, copy number loss of CD58 or TP53 was also identified to be an independent negative prognostic factor. Our results have uncovered the previously unknown critical impact of gene mutations on the prognosis of DLBCL and are fundamentally important for the future design of tailored therapy for improved clinical outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.