Regulated in development and DNA damage response-1 (REDD1) is a stress-related protein and is involved in the progression of cancer. The role and regulatory mechanism of REDD1 in bladder urothelial carcinoma (BUC), however, is yet unidentified. The expression of REDD1 in BUC was detected by Western blot analysis and immunohistochemistry (IHC). The correlation between REDD1 expression and clinical features in patients with BUC were assessed. The effects of REDD1 on cellular proliferation, apoptosis, autophagy, and paclitaxel sensitivity were determined both and Then the targeted-regulating mechanism of REDD1 by miRNAs was explored. Here the significant increase of REDD1 expression is detected in BUC tissue, and REDD1 is first reported as an independent prognostic factor in patients with BUC. Silencing REDD1 expression in T24 and EJ cells decreased cell proliferation, increased apoptosis, and decreased autophagy, whereas the ectopic expression of REDD1 in RT4 and BIU87 cells had the opposite effect. In addition, the REDD1-mediated proliferation, apoptosis, and autophagy are found to be negatively regulated by miR-22 , which intensify the paclitaxel sensitivity via inhibition of the well-acknowledged REDD1-EEF2K-autophagy axis. AKT/mTOR signaling initially activated or inhibited in response to silencing or enhancing REDD1 expression and then recovered rapidly. Finally, the inhibited REDD1 expression by either RNAi or miR-22 sensitizes BUC tumor cells to paclitaxel in a subcutaneous transplant carcinoma model REDD1 is confirmed as an oncogene in BUC, and antagonizing REDD1 could be a potential therapeutic strategy to sensitize BUC cells to paclitaxel. .
Cofilin-1 (CFL1) and Arp3 expression in 46 squamous cell and adenosquamous carcinomas (SC/ASCs) and 80 adenocarcinomas (ACs) were measured by using immunohistochemistry. Positive CFL1 and Arp3 expression were significantly associated with large tumor size, high TNM stage, lymph node metastasis, and decreased overall survival in both SC/ASC and AC patients (p < .001). Multivariate Cox regression analysis showed that positive CFL1 and Arp3 expression are independent poor-prognostic factors for both SC/ASC and AC patients. Our study suggested that positive CFL1 and Arp3 expression are closely related to tumor progression, metastasis, and poor prognosis of gallbladder cancer.
Gallbladder cancer (GBC) is a rare but highly aggressive cancer for which no well-accepted prognostic biomarkers have been identified. Thymus cell antigen 1 (Thy1), also known as cluster of differentiation (CD)90, and integrin α6 (ITGA6), also known as CD49f, are important molecules in cancer and putative markers of various stem cell types. However, their role in GBC remains to be elucidated. In the present study, Thy1 and ITGA6 expression status in clinical GBC samples, which comprised squamous cell/adenosquamous carcinoma (SC/ASC) and adenocarcinoma (AC) subtypes, was investigated. The associations between Thy1 and ITGA6 expression and clinical parameters and survival rate were analyzed separately. The THY1 and ITGA6 messenger RNA levels were significantly higher in both SC/ASC and AC tissues than in adjacent non-tumor tissues (all P<0.001). These results were subsequently confirmed by immunohistochemical analyses. Overexpression of Thy1 and ITGA6 was correlated with poor differentiation, large tumor size, lymph node metastasis and great invasiveness in SC/ASC (Thy1, P=0.045, P=0.005, P=0.003 and P=0.009, respectively, and ITGA6, P=0.029, P=0.011, P=0.009 and P=0.004, respectively) and AC (Thy1, P=0.027, P<0.001, P=0.003 and P 0.004, respectively, and ITGA6, P=0.002, P=0.003, P=0.006 and P=0.006, respectively). Both Thy1 and ITGA6 were expressed at higher levels in AC with advanced tumor-node-metastasis stage (TNM) than in AC with low TNM stage (P=0.001 and P=0.018, respectively). In addition, patients with elevated Thy1 or ITGA6 expression had shorter overall survival than those with negative Thy1 or ITGA6 expression. Multivariate Cox regression analysis demonstrated that Thy1 (SC/ASC, P=0.001 and AC, P=0.005) and ITGA6 (both P=0.003) were independent predictors of poor prognosis in both SC/ASC and AC patients. In conclusion, Thy1 and ITGA6 could be clinical prognostic markers for GBC.
We found a new in vivo route to produce maternal doubled haploid of Brassica napus . The pollen donor, an allooctaploid rapeseed, acts as a DH inducer. Inbred line has a powerful advantage in cultivar breeding and genetic analysis. Compared to the traditional breeding methods, doubled haploid production can save years off the breeding process. Though genotype-dependent tissue culture methods are widely used in the Brassica crops, seed-based in vivo doubled haploid developing systems are rare in nature and in the laboratory. As interspecific cross and interploid hybridization play an important role in genome evolution and plant speciation, we created a new Brassica artificial hybrid, a Brassica allooctaploid (AAAACCCC, 2n = 8× = 76), by interspecific crossing and genome doubling. A homozygous line was observed at the third self-generation of a synthesized Brassica allohexaploid (AAAACC, 2n = 6× = 58). Crosses between B. napus as female and Brassica allooctaploid as pollen donor were conducted, which yielded maternal doubled haploid B. napus that were identified based on phenotype, ploidy, and molecular analysis. The Brassica octaploid acted as a maternal doubled haploid inducer and had a relatively high induction rate. Our research provides a new insight for generation of homozygous lines in vivo using a single-step approach, as well as promotes the understanding in breeding programs and genetic studies involving the Brassicas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.