Accumulating evidence has shown that dysfunctional mitochondria can be selectively removed by mitophagy. Dysregulation of mitophagy is implicated in the development of neurodegenerative disease and metabolic disorders. How individual mitochondria are recognized for removal and how this process is regulated remain poorly understood. Here we report that FUNDC1, an integral mitochondrial outer-membrane protein, is a receptor for hypoxia-induced mitophagy. FUNDC1 interacted with LC3 through its typical LC3-binding motif Y(18)xxL(21), and mutation of the LC3-interaction region impaired its interaction with LC3 and the subsequent induction of mitophagy. Knockdown of endogenous FUNDC1 significantly prevented hypoxia-induced mitophagy, which could be reversed by the expression of wild-type FUNDC1, but not LC3-interaction-deficient FUNDC1 mutants. Mechanistic studies further revealed that hypoxia induced dephosphorylation of FUNDC1 and enhanced its interaction with LC3 for selective mitophagy. Our findings thus offer insights into mitochondrial quality control in mammalian cells.
Purpose: Both CD44 and CD133 were reported as putative markers for isolating colorectal cancer stem cells (CSC). It remains to be resolved if both of these markers are of functional importance for colorectal CSC. Experimental Design:The expression of CD44 and CD133 in normal colonic tissues and primary colorectal cancer was assessed by immunohistochemistry in a series of 60 patients on tissue microarray sections. Both in vitro clonogenic and in vivo tumorigenic assay were applied to measure CSC activities from the cells isolated from patients. Lentiviral RNA interference was used to stably knock down CD44 or CD133 in colorectal cancer cells from patients. Results: We found that CD44 + cells displayed clustered growth and they did not colocalize with CD133 + cells within colorectal cancer. As few as100 CD44 + cells from a patients' tumor initiated a xenograft tumor in vivo. A single CD44 + cell from a tumor could form a sphere in vitro which has characteristic stem cell properties and was able to generate a xenograft tumor resembling the properties of the primary tumor. Knockdown of CD44, but not CD133, strongly prevented clonal formation and inhibited tumorigenicity in xenograft model. Conclusions:These results indicate that CD44 is a robust marker and is of functional importance for colorectal CSC for cancer initiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.