Conspectus The past decades have witnessed great advances in the synthesis, structure determination, and properties investigation of coinage metal nanoclusters. These monodisperse clusters have well-defined molecular structures, which is advantageous in correlating structures and properties. Metal nanoclusters are large molecules consisting of many components, so it is a big challenge to prepare them in a rational way. Strenuous efforts have been made to control their geometric and electronic structures, in order to optimize their various properties. A metal nanocluster normally contains a metal core and a peripheral ligand shell. The ligands do not only function as simple stabilizing agents. It has been revealed that these ligands are able to influence the formation processes of the nanoclusters, and they may also dictate the sizes, shapes, and properties of nanoclusters. There are mainly three types of ligands that are widely used as surface anchors on coinage metal nanoclusters: thiolates, phosphines, and halides. Recent ligand engineering has extended the scope to alkynyl ligands. As alkynyl ligands are versatile in interacting with metal atoms, interesting alkynyl–metal interfacial structures including linear, L-shaped, and V-shaped staple motifs can be generated, as well as a series of novel coinage metal nanoclusters that exhibit intriguing molecular geometries. The staple motifs do not simply resemble the surface structures of thiolate-protected nanoclusters, because the incorporation of alkynyl ligands may significantly alter diverse properties of nanoclusters. Compared with thiolate-protected gold nanoclusters, alkynyl-protected ones with identical metal cores exhibit distinctly different absorption profiles and show much improved catalytic activities for semihydrogenation of alkynes. In addition, the participation of alkynyl ligands could profoundly affect the luminescent properties of nanoclusters. These “ligand effects” are mainly attributed to the different nature of alkynyl ligands, as electronic perturbation through π-conjugated units may largely modulate the electronic structure of the whole cluster. In this Account, we describe the development of coinage metal nanoclusters protected with alkynyl ligands. We will first briefly bring up the emergence of alkynyl ligands as anchoring groups on the surfaces of nanoclusters. Then we present the direct reduction method for the synthesis of the following four categories of nanoclusters: (a) gold nanoclusters with mixed-ligand shells, (b) all alkynyl-protected gold nanoclusters, (c) heterobimetallic gold nanoclusters, and (d) silver nanoclusters. Their molecular structures are described, and their various alkynyl–metal interfacial structures are compared with thiolate–metal staples. Finally, ligand effects on the properties of the clusters, including optical absorption, luminescence, and catalysis, are discussed. The alkynyl ligands play an important role in terms of both structural and property aspects. We believe this Account will attract increasing at...
Metal nanoclusters whose surface ligands are removable while keeping their metal framework structures intact are an ideal system for investigating the influence of surface ligands on catalysis of metal nanoparticles. We report in this work an intermetallic nanocluster containing 62 metal atoms, Au34Ag28(PhC≡C)34, and its use as a model catalyst to explore the importance of surface ligands in promoting catalysis. As revealed by single-crystal diffraction, the 62 metal atoms in the cluster are arranged as a four-concentric-shell Ag@Au17@Ag27@Au17 structure. All phenylalkynyl (PA) ligands are linearly coordinated to the surface Au atoms with staple "PhC≡C-Au-C≡CPh" motif. Compared with reported thiolated metal nanoclusters, the surface PA ligands on Au34Ag28(PhC≡C)34 are readily removed at relatively low temperatures, while the metal core remains intact. The clusters before and after removal of surface ligands are used as catalysts for the hydrolytic oxidation of organosilanes to silanols. It is, for the first time, demonstrated that the organic-capped metal nanoclusters work as active catalysts much better than those with surface ligands partially or completely removed.
Ligand effects are revealed by studying the comparing catalytic ability of isostructural gold nanoclusters with different protecting ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.