In this paper, a Bragg reflector is proposed by placing periodic metallic gratings in the center of a metal-insulator-metal (MIM) waveguide. According to the effective refractive index modulation caused by different waveguide widths in a period, a reflection channel with a large bandwidth is firstly achieved. Besides, the Mach-Zehnder interference (MZI) effect arises by shifting the gratings away from the waveguide center. Owing to different optical paths with unequal indices on both sides of the grating, a narrow MZI band gap will be obtained. It is interesting to find out that the Bragg reflector and Mach-Zehnder interferometer are immune to each other, and their wavelengths can be manipulated by the period and the grating length, respectively. Additionally, we can obtain three MZI channels and one Bragg reflection channel by integrating three different gratings into a large period. The performances are investigated by finite-difference time-domain (FDTD) simulations. In the index range of 1.33–1.36, the maximum sensitivity for the structure is as high as 1 500 nm/RIU, and it is believed that this proposed structure can find widely applications in the chip-scale optical communication and sensing areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.