All-electric aircraft is a high priority goal in the avionics community. Both increased reliability and efficiency are the promised implications of this move. But, thermal management has become a significant issue that must be resolved before reaching this goal. Advanced analysis technologies such as finite element method and intelligent control systems such as field oriented control are being used to better understand the source of the heat and to eliminate as much of it as possible. This paper addresses the motivation behind allelectric aircraft and gives an overview of some of the considerations in cooling, simulation and modeling, and control, with an example of one control scheme which is being developed.= maximum allowable current change rate
Heat pipes are commonly used in electronics cooling applications to spread heat from a concentrated heat source to a larger heat sink. Heat pipes work on the principles of two-phase heat transfer by evaporation and condensation of a working fluid. The amount of heat that can be transported is limited by the capillary and hydrostatic forces in the wicking structure of the device. Thermal ground planes are two-dimensional high conductivity heat pipes that can serve as thermal ground to which heat can be rejected by a multitude of heat sources. As hydrostatic forces are dependent on gravity, it is commonly known that heat pipe and thermal ground plane performance is orientation dependent. The effect of variation of gravity force on performance is discussed and the development of a miniaturized thermal ground plane for high g operation is described. In addition, experimental results are presented from zero to −10g acceleration. The study shows and discusses that minimal orientation or g-force dependence can be achieved if pore dimensions in the wicking structure can be designed at micro/nano-scale dimensions.
All-electric aircraft is a high-priority goal in the avionics community. Both increased reliability and efficiency are the promised implications of this move. But, thermal management has become a significant problem that must be resolved before reaching this goal. Electromechanical actuators (EMAs) are of special concern. Advanced analysis technologies such as the finite element method (FEM) and intelligent control systems such as field-oriented control (FOC) are being used to better understand the source of the heat and to eliminate as much of it as possible. This paper describes the nonlinear, lumped-element, integrated modeling of a permanent magnet (PM) motor used in an EMA. The parameters, including nonlinear inductance, rotor flux linkage, and thermal resistances and capacitances, are tuned using FEM models of a real, commercial actuator. The FOC scheme and the lumped-element thermal model are also described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.