A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H → γγ and H → ZZ → 4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is m H ¼ 125.09 AE 0.21 ðstatÞ AE 0.11 ðsystÞ GeV. DOI: 10.1103/PhysRevLett.114.191803 PACS numbers: 14.80.Bn, 13.85.Qk The study of the mechanism of electroweak symmetry breaking is one of the principal goals of the CERN LHC program. In the standard model (SM), this symmetry breaking is achieved through the introduction of a complex doublet scalar field, leading to the prediction of the Higgs boson H [1-6], whose mass m H is, however, not predicted by the theory. In 2012, the ATLAS and CMS Collaborations at the LHC announced the discovery of a particle with Higgs-boson-like properties and a mass of about 125 GeV [7][8][9]. The discovery was based primarily on mass peaks observed in the γγ and ZZ → l þ l − l 0þ l 0−(denoted H → ZZ → 4l for simplicity) decay channels, where one or both of the Z bosons can be off shell and where l and l 0 denote an electron or muon. With m H known, all properties of the SM Higgs boson, such as its production cross section and partial decay widths, can be predicted. Increasingly precise measurements [10][11][12][13] have established that all observed properties of the new particle, including its spin, parity, and coupling strengths to SM particles are consistent within the uncertainties with those expected for the SM Higgs boson.The ATLAS and CMS Collaborations have independently measured m H using the samples of proton-proton collision data collected in 2011 and 2012, commonly referred to as LHC Run 1. The analyzed samples correspond to approximately 5 fb −1 of integrated luminosity at ffiffi ffi s p ¼ 7 TeV, and 20 fb −1 at ffiffi ffi s p ¼ 8 TeV, for each experiment. Combined results in the context of the separate experiments, as well as those in the individual channels, are presented in Refs. [12,[14][15][16].This Letter describes a combination of the Run 1 data from the two experiments, leading to improved precision for m H . Besides its intrinsic importance as a fundamental parameter, improved knowledge of m H yields more precise predictions for the other Higgs boson properties. Furthermore, the combined mass measurement provides a first step towards combinations of other quantities, such as the couplings. In the SM, m H is related to the values of the masses of the W boson and top quark through loopinduced effects. Taking into account other measured SM quantities, the comparison of the measurements of the Higgs boson, W boson, and top quark masses can be used to directly test the consistency of the SM [17] and thus to search for evidence of physics beyond the SM.The combination is performed usin...
A systematic study of the factorization of long-range azimuthal two-particle correlations into a product of single-particle anisotropies is presented as a function of p T and η of both particles and as a function of the particle multiplicity in PbPb and pPb collisions. The data were taken with the CMS detector for PbPb collisions at √ s NN = 2.76 TeV and pPb collisions at √ s NN = 5.02 TeV, covering a very wide range of multiplicity. Factorization is observed to be broken as a function of both particle p T and η. When measured with particles of different p T , the magnitude of the factorization breakdown for the second Fourier harmonic reaches 20% for very central PbPb collisions but decreases rapidly as the multiplicity decreases. The data are consistent with viscous hydrodynamic predictions, which suggest that the effect of factorization breaking is mainly sensitive to the initial-state conditions rather than to the transport properties (e.g., shear viscosity) of the medium. The factorization breakdown is also computed with particles of different η. The effect is found to be weakest for mid-central PbPb events but becomes larger for more central or peripheral PbPb collisions, and also for very-high-multiplicity pPb collisions. The η-dependent factorization data provide new insights to the longitudinal evolution of the medium formed in heavy ion collisions.
Properties of the Higgs boson are measured in the H → ZZ → 4 ( = e, µ) decay channel. A data sample of proton-proton collisions at √ s = 13 TeV, collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb −1 is used. The signal strength modifier µ, defined as the ratio of the observed Higgs boson rate in the H → ZZ → 4 decay channel to the standard model expectation, is measured to be µ = 1.05 +0.19−0.17 at m H = 125.09 GeV, the combined ATLAS and CMS measurement of the Higgs boson mass. The signal strength modifiers for the individual Higgs boson production modes are also measured. The cross section in the fiducial phase space defined by the requirements on lepton kinematics and event topology is measured to be 2.92−0.24 (syst) fb, which is compatible with the standard model prediction of 2.76 ± 0.14 fb. Differential cross sections are reported as a function of the transverse momentum of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet. The Higgs boson mass is measured to be m H = 125.26 ± 0.21 GeV and the width is constrained using the on-shell invariant mass distribution to be Γ H < 1.10 GeV, at 95% confidence level. The H → ZZ → 4 decay channel ( = e, µ) has a large signal-to-background ratio, and the precise reconstruction of the final-state decay products allows the complete determination of the kinematics of the Higgs boson. This makes it one of the most important channels to measure the properties of the Higgs boson. Measurements performed by the ATLAS and CMS Collaborations using this decay channel with the LHC Run 1 data include the determination of the mass and spin-parity of the boson [14][15][16][17][18], its width [19][20][21], the fiducial cross sections [22, 23], and the tensor structure of its interaction with a pair of neutral gauge bosons [16, 18, 20]. KeywordsIn this paper measurements of properties of the Higgs boson decaying into the fourlepton final state in proton-proton (pp) collisions at √ s = 13 TeV are presented. Events are classified into categories optimized with respect to those used in ref.[14] to provide increased sensitivity to subleading production modes of the Higgs boson such as vector boson fusion (VBF) and associated production with a vector boson (WH, ZH) or top quark pair (ttH). The signal strength modifier, defined as the ratio of the measured Higgs boson rate in the H → ZZ → 4 decay channel to the SM expectation, is measured. The signal strength modifiers for the individual Higgs boson production modes are constrained. In addition, cross section measurements and dedicated measurements of the mass and width of the Higgs boson are performed. This paper is structured as follows: the apparatus and the data samples are described in section 2 and section 3. Section 4 summarizes the event reconstruction and selection. Kinematic discriminants and event categorization are discussed in section 5 and section 6. The background estimation and the signal modelling are reported i...
Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at √ s = 13 TeV The CMS collaboration
A search is presented for physics beyond the standard model (SM) using electron or muon pairs with high invariant mass. A data set of proton-proton collisions collected by the CMS experiment at the LHC at $$ \sqrt{s} $$ s = 13 TeV from 2016 to 2018 corresponding to a total integrated luminosity of up to 140 fb−1 is analyzed. No significant deviation is observed with respect to the SM background expectations. Upper limits are presented on the ratio of the product of the production cross section and the branching fraction to dileptons of a new narrow resonance to that of the Z boson. These provide the most stringent lower limits to date on the masses for various spin-1 particles, spin-2 gravitons in the Randall-Sundrum model, as well as spin-1 mediators between the SM and dark matter particles. Lower limits on the ultraviolet cutoff parameter are set both for four-fermion contact interactions and for the Arkani-Hamed, Dimopoulos, and Dvali model with large extra dimensions. Lepton flavor universality is tested at the TeV scale for the first time by comparing the dimuon and dielectron mass spectra. No significant deviation from the SM expectation of unity is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.