Context. The Crab nebula was observed with the HESS stereoscopic Cherenkov-telescope array between October 2003 and January 2005 for a total of 22.9 h (after data quality selection). This period of time partly overlapped with the commissioning phase of the experiment; observations were made with three operational telescopes in late 2003 and with the complete 4 telescope array in January-February 2004 and October 2004-January 2005. Aims. Observations of the Crab nebula are discussed and used as an example to detail the flux and spectral analysis procedures of HESS. The results are used to evaluate the systematic uncertainties in HESS flux measurements. Methods. The Crab nebula data are analysed using standard HESS analysis procedures, which are described in detail. The flux and spectrum of γ-rays from the source are calculated on run-by-run and monthly time-scales, and a correction is applied for long-term variations in the detector sensitivity. Comparisons of the measured flux and spectrum over the observation period, along with the results from a number of different analysis procedures are used to estimate systematic uncertainties in the measurements. Results. The data, taken at a range of zenith angles between 45• and 65• , show a clear signal with over 7500 excess events. The energy spectrum is found to follow a power law with an exponential cutoff, with photon index Γ = 2.39 ± 0.03 stat and cutoff energy E c = (14.3 ± 2.1 stat ) TeV between 440 GeV and 40 TeV. The observed integral flux above 1 TeV is (2.26 ± 0.08 stat ) × 10 −11 cm −2 s −1 . The estimated systematic error on the flux measurement is estimated to be 20%, while the estimated systematic error on the spectral slope is 0.1.
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
The measurement of an excess in the cosmic-ray electron spectrum between 300 and 800 GeV by the ATIC experiment has -together with the PAMELA detection of a rise in the positron fraction up to ≈100 GeV -motivated many interpretations in terms of dark matter scenarios; alternative explanations assume a nearby electron source like a pulsar or supernova remnant. Here we present a measurement of the cosmic-ray electron spectrum with H.E.S.S. starting at 340 GeV. While the overall electron flux measured by H.E.S.S. is consistent with the ATIC data within statistical and systematic errors, the H.E.S.S. data exclude a pronounced peak in the electron spectrum as suggested for interpretation by ATIC. The H.E.S.S. data follow a power-law spectrum with spectral index of 3.0 ± 0.1(stat.) ± 0.3(syst.), which steepens at about 1 TeV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.