Combined theoretical and experimentalwork has resulted in thecreation of a paradigm which has allowedsemi-qusntitative understandingof the edge confinementimprovement that occursin the H-mode. Shear in the E × B flowof the fluctuations in theplasma edge can lead to decorrelation ofthefluctuations, decreaae!d radialcorr._ lation lengthsand reduced turbulenttransport.Changes in the radialelectric field, the densityfluctuations and the edge transportconsistent with shear stabilization of turbulencehave been seen ha severaltokamaks, The purpose of thispaper isto discuss the most recentdata in the light of the basicparadigm of electric field shear stabilization and to critically cx)mparethe experimentalresults with various theories.
Recent measurements of the two-dimensional (2-D) spatial profiles of divertor plasma density, temperature, and emissivity in the DIII-D tokamak [J. Luxon et al., in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1987), p. 159] under highly radiating conditions are presented. Data are obtained using a divertor Thomson scattering system and other diagnostics optimized for measuring the high electron densities and low temperatures in these detached divertor plasmas (ne⩽1021 m−3, 0.5 eV⩽Te). D2 gas injection in the divertor increases the plasma radiation and lowers Te to less than 2 eV in most of the divertor volume. Modeling shows that this temperature is low enough to allow ion–neutral collisions, charge exchange, and volume recombination to play significant roles in reducing the plasma pressure along the magnetic separatrix by a factor of 3–5, consistent with the measurements. Absolutely calibrated vacuum ultraviolet spectroscopy and 2-D images of impurity emission show that carbon radiation near the X-point, and deuterium radiation near the target plates contribute to the reduction in Te. Uniformity of radiated power (Prad) (within a factor of 2) along the outer divertor leg, with peak heat flux on the divertor target reduced fourfold, was obtained. A comparison with 2-D fluid simulations shows good agreement when physical sputtering and an ad hoc chemical sputtering source (0.5%) from the private flux region surface are used.
This paper summarizes results from a two-dimensional (2D) physics analysis of the transition to and stable operation of the partially detached divertor (PDD) regime induced by deuterium injection in DIII-D. The analysis [1] shows that PDD operation is characterized by a radiation zone near the X-point at T e ∼ 8-15 eV which reduces the energy flux into the divertor and thereby also reduces the target plate heat flux, an ionization zone below the X-point which provides a deuterium ion source to fuel parallel flow down the outer divertor leg, an ion-neutral interaction zone in the outer leg which removes momentum and energy from the flow and finally a volume recombination zone above the target plate which reduces the particle flux to the low levels measured on the plates and thereby also contributes to reduction in target plate heat flux.
Langmuir probe sampling tips are made of a linear carbon fiber composite. The mechanical, electrical, data acquisition and power supply systems design will be described. Initial measurements will also be presented.2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.