Polymeric capsules with a thick shell made of biodegradable and biocompatible polymer and a liquid core of perfluorooctyl bromide (PFOB) were evaluated for stability as well as for ultrasound and magnetic resonance imaging (MRI) contrast enhancement. The method of preparation allows the mean capsule diameter to be regulated between 70 nm and 25 µm and the capsule thickness‐to‐radius ratio from 0.25 to 0.54. Capsule diameter remains stable at 37 °C in phosphate buffer for at least 4 and 6 h for nanocapsules and microcapsules, respectively. The in vitro ultrasound signal‐to‐noise ratio (SNR) was measured from 40 to 60 MHz for 6 µm and 150 nm capsules: the SNR increases with capsule concentration up to 20–25 mg mL−1, and then reaches a plateau that depends on capsule diameter (13.5 ± 1.5 dB for 6 µm and 6 ± 2 dB for the 150 nm capsules). The ultrasound SNR is stable for up to 20 min for microcapsules and for several hours for nanocapsules. For nanocapsules, the thinner the shell, the larger the SNR and the more compressible the capsules. Nanocapsule suspensions imaged in vitro with a commercial ultrasound imaging system (normal and tissue harmonic imaging modes, 7–14 MHz probe) were detected down to concentrations of 12.5 mg mL−1. Injections of nanocapsules (200 µg ml−1) in mice in vivo reveal that the initial bolus passage presents significant ultrasound enhancement of the blood pool during hepatic imaging (7–14 MHz probe, tissue harmonic imaging mode). 19F‐MRI images were obtained in vitro at 9.4T using spin‐echo and gradient echo sequences and allow detecting nanocapsules in suspension (50 mg mL−1). In conclusion, these results show initial feasibility for development of these capsules toward a dual‐modality contrast agent.
Nanoparticles are a promising solution for delivery of a wide range of medicines and vaccines. Optimizing their design depends on being able to resolve, understand, and predict biophysical and therapeutic properties, as a function of design parameters. While existing tools have made great progress, gaps in understanding remain because of the inability to make detailed measurements of multiple correlated properties. Typically, an average measurement is made across a heterogeneous population, obscuring potentially important information. In this work, we develop and apply a method for characterizing nanoparticles with single-particle resolution. We use convex lens-induced confinement (CLiC) microscopy to isolate and quantify the diffusive trajectories and fluorescent intensities of individual nanoparticles trapped in microwells for long times. First, we benchmark detailed measurements of fluorescent polystyrene nanoparticles against prior data to validate our approach. Second, we apply our method to investigate the size and loading properties of lipid nanoparticle (LNP) vehicles containing silencing RNA (siRNA), as a function of lipid formulation, solution pH, and drug-loading. By taking a comprehensive look at the correlation between the intensity and size measurements, we gain insights into LNP structure and how the siRNA is distributed in the LNP. Beyond introducing an analytic for size and loading, this work allows for future studies of dynamics with single-particle resolution, such as LNP fusion and drug-release kinetics. The prime contribution of this work is to better understand the connections between microscopic and macroscopic properties of drug-delivery vehicles, enabling and accelerating their discovery and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.