Background: Wearable sensors, particularly accelerometers alone or combined with gyroscopes and magnetometers in an inertial measurement unit (IMU), are a logical alternative for gait analysis. While issues with intrusive and complex sensor placement limit practicality of multi-point IMU systems, single-point IMUs could potentially maximize patient compliance and allow inconspicuous monitoring in daily-living.Therefore, this review aimed to examine the validity of single-point IMUs for gait metrics analysis and identify studies employing them for clinical applications.
Methods:The Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA) were followed utilizing the following databases: PubMed; MEDLINE; EMBASE and Cochrane. Four databases were systematically searched to obtain relevant journal articles focusing on the measurement of gait metrics using single-point IMU sensors.Results: A total of 90 articles were selected for inclusion. Critical analysis of studies was conducted, and data collected included: sensor type(s); sensor placement; study aim(s); study conclusion(s); gait metrics and methods; and clinical application. Validation research primarily focuses on lower trunk sensors in healthy cohorts. Clinical applications focus on diagnosis and severity assessment, rehabilitation and intervention efficacy and delineating pathological subjects from healthy controls.Discussion: This review has demonstrated the validity of single-point IMUs for gait metrics analysis and their ability to assist in clinical scenarios. Further validation for continuous monitoring in daily living scenarios and performance in pathological cohorts is required before commercial and clinical uptake can be expected.
Introduction
The semantic network is an important mediator of language, enabling both speech production and the comprehension of multimodal stimuli. A major challenge in the field of neurosurgery is preventing semantic deficits. Multiple cortical areas have been linked to semantic processing, though knowledge of network connectivity has lacked anatomic specificity. Using attentional task‐based fMRI studies, we built a neuroanatomical model of this network.
Methods
One hundred and fifty‐five task‐based fMRI studies related to categorization of visual words and objects, and auditory words and stories were used to generate an activation likelihood estimation (ALE). Cortical parcellations overlapping the ALE were used to construct a preliminary model of the semantic network based on the cortical parcellation scheme previously published under the Human Connectome Project. Deterministic fiber tractography was performed on 25 randomly chosen subjects from the Human Connectome Project, to determine the connectivity of the cortical parcellations comprising the network.
Results
The ALE analysis demonstrated fourteen left hemisphere cortical regions to be a part of the semantic network: 44, 45, 55b, IFJa, 8C, p32pr, SFL, SCEF, 8BM, STSdp, STSvp, TE1p, PHT, and PBelt. These regions showed consistent interconnections between parcellations. Notably, the anterior temporal pole, a region often implicated in semantic function, was absent from our model.
Conclusions
We describe a preliminary cortical model for the underlying structural connectivity of the semantic network. Future studies will further characterize the neurotractographic details of the semantic network in the context of medical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.