We have studied the optical properties (complex dielectric function) of bulk SrTiO3 and thin films on Si and Pt using spectroscopic ellipsometry over a very broad spectral range, starting at 0.03 eV [using Fourier transform infrared (FTIR) ellipsometry] to 8.7 eV. In the bulk crystals, we analyze the interband transitions in the spectra to determine the critical-point parameters. To interpret these transitions, we performed band structure calculations based on ab initio pseudopotentials within the local-density approximation. The dielectric function was also calculated within this framework and compared with our ellipsometry data. In the FTIR ellipsometry data, we notice a strong lattice absorption peak due to oxygen-related vibrations. Two longitudinal optic (LO) phonons were also identified. In SrTiO3 films on Si, the refractive index below the band gap decreases with decreasing thickness because of the increasing influence of the amorphous interfacial layer between the SrTiO3 film and the Si substrate. There is also a decrease in amplitude and an increase in broadening of the critical points with decreasing thickness. In SrTiO3 films on Pt, there is a strong correlation between the crystallinity and texture of the films (mostly aligned with the Pt pseudosubstrate) and the magnitude of the refractive index, the Urbach tail below the bulk band edge, and the critical-point parameters. FTIR reflectance measurements of SrTiO3 on Pt (reflection–absorption spectroscopy) show absorption peaks at the LO phonon energies, a typical manifestation of the Berreman effect for thin insulating films on a metal. The Urbach tail in our ellipsomety data and the broadening of the optical phonons in SrTiO3 on Pt are most likely caused by oxygen vacancy clusters.
We have used photoemission methods to directly measure the valence and conduction band offsets at SrTiO3/Si(001) interfaces, as prepared by molecular-beam epitaxy. Within experimental error, the measured values are the same for growth on n- and p-Si, with the entire band discontinuity occurring at the valence band edge. In addition, band bending is much larger at the p-Si heterojunction than at the n-type heterojunction. Previously published threshold voltage behavior for these interfaces can now be understood in light of the present results.
Most semiconductor materials such as Si, Ge, and GaAs are subject to oxidation when exposed to oxidants. This results in difficulties in the heterointegration of epitaxial oxides on these semiconductors. Even though certain oxides may be thermodynamically stable when placed in contact with semiconductors, direct epitaxy of these oxides encounters kinetic difficulties due to the loss of epitaxy caused by the formation of an amorphous oxide at the interface. In this article, we address some important issues on the heteroepitaxy of oxides on semiconductors and show a stepped growth method that utilizes the kinetic characteristics of the growth process to suppress the oxidation of the substrate surface and thereby achieve oxide films with a high degree of crystallinity. The epitaxy of high-quality SrTiO3 (STO) thin films directly on Si was achieved. The chemical and structural properties of the STO/Si interface were evaluated in situ using reflection high-energy electron diffraction, x-ray photoelectron spectroscopy, and scanning tunneling microscopy, and ex situ using transmission electron microscopy and electron energy loss spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.