HH 30 in Taurus has been imaged with the Hubble Space T elescope WFPC2. The images show in reÑected light a Ñared disk with a radius of about 250 AU that obscures the protostar. The disk resembles detailed accretion disk models that constrain its density distribution and show that its inclination is less than 10¡. There are bipolar emission-line jets perpendicular to the disk, a very clear demonstration of the standard paradigm for accretion disk and jet systems. However, asymmetries in the light distribution show that the disk has not completely settled into a quasi-equilibrium accretion state, or that some of the observed scattering is from an asymmetric envelope. The emission-line jet itself is resolved into a number of knots with typical lengths and separations of much smaller and more numerous than 0A .4, indicated by lower resolution ground-based studies. There are indications of still Ðner structures in the jet all the way to the resolution limit ofThe knots have proper motions ranging from 100 to 300 0A .1. km s~1 and are therefore generated at the surprisingly high rate of about 0.4 knots per jet per year. The jet appears to be collimated within a cone of opening angle 3¡ and can be seen to within 30 AU of the star.Both single-and multiple-scattering disk models have a range of possible solutions, but by requiring pressure support and temperature equilibrium, a self-consistent model emerges. There is evidence for pressure support because the disk appears to have a Gaussian height proÐle. The temperature at each point in the disk is determined by the disk geometry, which in turn Ðxes the temperature in a selfconsistent manner. The extinction to the protostar is unknown but constrained to be greater than 24 mag. The optical properties of the scattering grains in the disk are determined and found to imply a large scattering asymmetry, but they seem to follow the interstellar reddening law. The absolute magnitude and colors of the unseen protostar, which has a brightness in the I bandpass of about 0.16 times solar and is very red, are obtained. The disk mass is about 0.006 times solar and has an expected lifetime of about 105 yr.
By combining complementary monitoring observations spanning long, medium and short time scales, we have constructed power spectral densities (PSDs) of six Seyfert 1 galaxies. These PSDs span 4 orders of magnitude in temporal frequency, sampling variations on time scales ranging from tens of minutes to over a year. In at least four cases, the PSD shows a "break," a significant departure from a power law, typically on time scales of order a few days. This is similar to the behavior of Galactic X-ray binaries (XRBs), lower mass compact systems with breaks on time scales of seconds. NGC 3783 shows tentative evidence for a doubly-broken power law, a feature that until now has only been seen in the (much better-defined) PSDs of low-state XRBs. It is also interesting that (when one previously-observed object is added to make a small sample of seven), an apparently significant correlation is seen between the break time scale T and the putative black hole mass M BH , while none is seen between break time scale and luminosity. The data are consistent with the linear relation T = M BH /10 6.5 M ⊙ ; extrapolation over 6-7 orders of magnitude is in reasonable agreement with XRBs. All of this strengthens the case for a physical similarity between Seyfert 1s and XRBs.
We present the catalog of optical and infrared counterparts of the Chandra COSMOS-Legacy Survey, a 4.6 Ms Chandra program on the 2.2 deg 2 of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while ;54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2-10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.
The COSMOS-Legacy survey is a 4.6 Ms Chandra program that has imaged 2.2 deg2 of the COSMOS field with an effective exposure of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.