Various types of next-generation encapsulation films based on polyolefins have recently been introduced and could attract market attention. These material innovations can be classified as polyolefin elastomer (POE) and thermoplastic polyolefin (TPO) encapsulants, both of which consist of a polyethylene backbone with different side groups. The main advantage of these materials is the replacement of the vinyl acetate side groups of state-of-the-art encapsulant ethylene vinyl acetate (EVA) so that acetic acid cannot be formed. The main objective of this paper is to investigate the material properties of next-generation encapsulant films and compare them to an EVA reference. Two commercially available EVA alternatives (POE and TPO) have been selected. The material properties of single films as well as the electrical performance of test modules using these different encapsulants were investigated. The different films show comparable optical, thermal and thermo-mechanical properties, with slight differences in UV transparency and melting temperatures. Only shear viscosity values are higher for TPO than for POE and EVA, which requires adaption of the photovoltaic (PV) module lamination parameters. The test modules comprising the different encapsulation films show minor differences in the electrical performance after manufacturing; upon accelerated aging, no significant power loss is observed. But compared to TPO or POE, after 3000 h of damp heat exposure, test modules with EVA show the beginning of corrosion effects at the silver grid and above the ribbons. Based on the results, it can be stated that the new polyolefin encapsulation materials show great potential to be a valid replacement for EVA.
Several series of six-cell photovoltaic test-modules-intact and with deliberately generated failures (micro-cracks, cell cracks, glass breakage and connection defects)-were artificially and naturally aged. They were exposed to various stress conditions (temperature, humidity and irradiation) in different climate chambers in order to identify (i) the stress-induced effects; (ii) the potential propagation of the failures and (iii) their influence on the performance. For comparison, one set of test-modules was also aged in an outdoor test site. All photovoltaic (PV) modules were thoroughly electrically characterized by electroluminescence and performance measurements before and after the accelerated ageing and the outdoor test. In addition, the formation of fluorescence effects in the encapsulation of the test modules in the course of the accelerated ageing tests was followed over time using UV-fluorescence imaging measurements. It was found that the performance of PV test modules with mechanical module failures was rather unaffected upon storage under various stress conditions. However, numerous micro-cracks led to a higher rate of degradation. The polymeric encapsulate of the PV modules showed the build-up of distinctive fluorescence effects with increasing lifetime as the encapsulant material degraded under the influence of climatic stress factors (mainly irradiation by sunlight and elevated temperature) by forming fluorophores. The induction period for the fluorescence effects of the polymeric encapsulant to be detectable was~1 year of outdoor weathering (in middle Europe) and 300 h of artificial irradiation (with 1000 W/m 2 artificial sunlight 300-2500 nm). In the presence of irradiation, oxygen-which permeated into the module through the polymeric backsheet-bleached the fluorescence of the encapsulant top layer between the cells, above cell cracks and micro-cracks. Thus, UV-F imaging is a perfect tool for on-site detection of module failures connected with a mechanical rupture of solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.