Categorizing people with late-onset Alzheimer’s disease into biologically coherent subgroups is important for personalized medicine. We evaluated data from five studies (total n = 4050, of whom 2431 had genome-wide single-nucleotide polymorphism (SNP) data). We assigned people to cognitively defined subgroups on the basis of relative performance in memory, executive functioning, visuospatial functioning, and language at the time of Alzheimer’s disease diagnosis. We compared genotype frequencies for each subgroup to those from cognitively normal elderly controls. We focused on APOE and on SNPs with p < 10−5 and odds ratios more extreme than those previously reported for Alzheimer’s disease (<0.77 or >1.30). There was substantial variation across studies in the proportions of people in each subgroup. In each study, higher proportions of people with isolated substantial relative memory impairment had ≥1 APOE ε4 allele than any other subgroup (overall p = 1.5 × 10−27). Across subgroups, there were 33 novel suggestive loci across the genome with p < 10−5 and an extreme OR compared to controls, of which none had statistical evidence of heterogeneity and 30 had ORs in the same direction across all datasets. These data support the biological coherence of cognitively defined subgroups and nominate novel genetic loci.
INTRODUCTION There may be biologically relevant heterogeneity within typical late-onset Alzheimer’s dementia. METHODS We analyzed cognitive data from people with incident late-onset Alzheimer’s dementia from a prospective cohort study. We determined individual averages across memory, visuospatial functioning, language, and executive functioning. We identified domains with substantial impairments relative to that average. We compared demographic, neuropathology, and genetic findings across groups defined by relative impairments. RESULTS During 32,286 person-years of follow-up, 869 people developed Alzheimer’s dementia. There were 393 (48%) with no domain with substantial relative impairments. Some participants had isolated relative impairments in memory (148, 18%), visuospatial functioning (117, 14%), language (71, 9%), and executive functioning (66, 8%). The group with isolated relative memory impairments had higher proportions with APOE ε4, more extensive Alzheimer’s-related neuropathology, and higher proportions with other Alzheimer’s dementia genetic risk variants. DISCUSSION A cognitive subgrouping strategy may identify biologically distinct subsets of people with Alzheimer’s dementia.
Approximately 30% of older adults exhibit the neuropathological features of Alzheimer’s disease without signs of cognitive impairment. Yet, little is known about the genetic factors that allow these potentially resilient individuals to remain cognitively unimpaired in the face of substantial neuropathology. We performed a large, genome-wide association study (GWAS) of two previously validated metrics of cognitive resilience quantified using a latent variable modelling approach and representing better-than-predicted cognitive performance for a given level of neuropathology. Data were harmonized across 5108 participants from a clinical trial of Alzheimer’s disease and three longitudinal cohort studies of cognitive ageing. All analyses were run across all participants and repeated restricting the sample to individuals with unimpaired cognition to identify variants at the earliest stages of disease. As expected, all resilience metrics were genetically correlated with cognitive performance and education attainment traits (P-values < 2.5 × 10−20), and we observed novel correlations with neuropsychiatric conditions (P-values < 7.9 × 10−4). Notably, neither resilience metric was genetically correlated with clinical Alzheimer’s disease (P-values > 0.42) nor associated with APOE (P-values > 0.13). In single variant analyses, we observed a genome-wide significant locus among participants with unimpaired cognition on chromosome 18 upstream of ATP8B1 (index single nucleotide polymorphism rs2571244, minor allele frequency = 0.08, P = 2.3 × 10−8). The top variant at this locus (rs2571244) was significantly associated with methylation in prefrontal cortex tissue at multiple CpG sites, including one just upstream of ATPB81 (cg19596477; P = 2 × 10−13). Overall, this comprehensive genetic analysis of resilience implicates a putative role of vascular risk, metabolism, and mental health in protection from the cognitive consequences of neuropathology, while also providing evidence for a novel resilience gene along the bile acid metabolism pathway. Furthermore, the genetic architecture of resilience appears to be distinct from that of clinical Alzheimer’s disease, suggesting that a shift in focus to molecular contributors to resilience may identify novel pathways for therapeutic targets.
Objective: Studies use different instruments to measure cognitirating cognitive tests permit direct comparisons of individuals across studies and pooling data for joint analyses. Method: We began our legacy item bank with data from the Adult Changes in Thought study (n = 5,546), the Alzheimer's Disease Neuroimaging Initiative (n = 3,016), the Rush Memory and Aging Project (n = 2,163), and the Religious on such as the Mini-Mental State Examination, the Alzheimer's Disease Assessment Scale-Cognitive Subscale, the Wechsler Memory Scale, and the Boston Naming Test. CocalibOrders Study (n = 1,456). Our workflow begins with categorizing items administered in each study as indicators of memory, executive functioning, language, visuospatial functioning, or none of these domains. We use confirmatory factor analysis models with data from the most recent visit on the pooled sample across these four studies for cocalibration and derive item parameters for all items. Using these item parameters, we then estimate factor scores along with corresponding standard errors for each domain for each study. We added additional studies to our pipeline as available and focused on thorough consideration of candidate anchor items with identical content and administration methods across studies. Results: Prestatistical harmonization steps such qualitative and quantitative assessment of granular cognitive items and evaluating factor structure are important steps when trying to cocalibrate cognitive scores across studies. We have cocalibrated cognitive data and derived scores for four domains for 76,723 individuals across 10 studies. Conclusions: We have implemented a large-scale effort to harmonize and cocalibrate cognitive domain scores across multiple studies of cognitive aging. Scores on the same metric This document is copyrighted by the American Psychological Association or one of its allied publishers.This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.