We demonstrate the bottom-up in-situ formation of organometallic oligomer chains at the single-molecule level. The chains are formed using the mechanically controllable break junction technique operated in a liquid environment, and consist of alternating isocyano-terminated benzene monomers coordinated to gold atoms. We show that the chaining process is critically determined by the surface density of molecules. In particular, we demonstrate that by reducing the local supply of molecules within the junction, either by lowering the molecular concentration or by adding side groups, the oligomerization process can be suppressed. Our experimental results are supported by ab-initio simulations, confirming that the isocyano terminating groups display a high tendency to form molecular chains, as a result of their high affinity for gold. Our findings open the road for the controlled formation of one-dimensional, single coordination-polymer chains as promising model systems of organometallic frameworks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.