The SuperWASP Cameras are wide-field imaging systems sited at the Observatorio del Roque de los Muchachos on the island of La Palma in the Canary Islands, and the Sutherland Station of the South African Astronomical Observatory. Each instrument has a field of view of some ~482 square degrees with an angular scale of 13.7 arcsec per pixel, and is capable of delivering photometry with accuracy better than 1% for objects having V ~ 7.0 - 11.5. Lower quality data for objects brighter than V ~15.0 are stored in the project archive. The systems, while designed to monitor fields with high cadence, are capable of surveying the entire visible sky every 40 minutes. Depending on the observational strategy, the data rate can be up to 100GB per night. We have produced a robust, largely automatic reduction pipeline and advanced archive which are used to serve the data products to the consortium members. The main science aim of these systems is to search for bright transiting exo-planets systems suitable for spectroscopic followup observations. The first 6 month season of SuperWASP-North observations produced lightcurves of ~6.7 million objects with 12.9 billion data points.Comment: 42 pages, 2 plates, 5 figures PASP in pres
Aims. Pointed observations with XMM-Newton provide the basis for creating catalogues of X-ray sources detected serendipitously in each field. This paper describes the creation and characteristics of the 2XMM catalogue. Methods. The 2XMM catalogue has been compiled from a new processing of the XMM-Newton EPIC camera data. The main features of the processing pipeline are described in detail. Results. The catalogue, the largest ever made at X-ray wavelengths, contains 246 897 detections drawn from 3491 public XMM-Newton observations over a 7-year interval, which relate to 191 870 unique sources. The catalogue fields cover a sky area of more than 500 deg 2 . The non-overlapping sky area is ∼360 deg 2 (∼1% of the sky) as many regions of the sky are observed more than once by XMM-Newton. The catalogue probes a large sky area at the flux limit where the bulk of the objects that contribute to the X-ray background lie and provides a major resource for generating large, well-defined X-ray selected source samples, studying the X-ray source population and identifying rare object types. The main characteristics of the catalogue are presented, including its photometric and astrometric properties
We report on the discovery of WASP-12b, a new transiting extrasolar planet with R pl = 1.79 +0.09 −0.09 R J and M pl = 1.41 +0.10 −0.10 M J . The planet and host star properties were derived from a Monte Carlo Markov chain analysis of the transit photometry and radial velocity data. Furthermore, by comparing the stellar spectrum with theoretical spectra and stellar evolution models, we determined that the host star is a supersolar metallicity ([M/H]= 0.3 +0.05 −0.15 ), late-F (T eff = 6300 +200 −100 K) star which is evolving off the zero-age main sequence. The planet has an equilibrium temperature of T eq = 2516 K caused by its very short period orbit (P = 1.09 days) around the hot, twelfth magnitude host star. WASP-12b has the largest radius of any transiting planet yet detected. It is also the most heavily irradiated and the shortest period planet in the literature.
Context. Several competing scenarios for planetary-system formation and evolution seek to explain how hot Jupiters came to be so close to their parent stars. Most planetary parameters evolve with time, making it hard to distinguish between models. The obliquity of an orbit with respect to the stellar rotation axis is thought to be more stable than other parameters such as eccentricity. Most planets, to date, appear aligned with the stellar rotation axis; the few misaligned planets so far detected are massive (>2 M J ). Aims. Our goal is to measure the degree of alignment between planetary orbits and stellar spin axes, to search for potential correlations with eccentricity or other planetary parameters and to measure long term radial velocity variability indicating the presence of other bodies in the system. Methods. For transiting planets, the Rossiter-McLaughlin effect allows the measurement of the sky-projected angle β between the stellar rotation axis and a planet's orbital axis. Using the HARPS spectrograph, we observed the Rossiter-McLaughlin effect for six transiting hot Jupiters found by the WASP consortium. We combine these with long term radial velocity measurements obtained with CORALIE. We used a combined analysis of photometry and radial velocities, fitting model parameters with the Markov Chain Monte Carlo method. After obtaining β we attempt to statistically determine the distribution of the real spin-orbit angle ψ. Results. We found that three of our targets have β above 90 • : WASP-2b: β = 153 • +11 −15 , WASP-15b: β = 139.6 • +5.2 −4.3 and WASP17b: β = 148.5 • +5.1 −4.2 ; the other three (WASP-4b, WASP-5b and WASP-18b) have angles compatible with 0 • . We find no dependence between the misaligned angle and planet mass nor with any other planetary parameter. All six orbits are close to circular, with only one firm detection of eccentricity e = 0.00848 +0.00085 −0.00095 in WASP-18b. No long-term radial acceleration was detected for any of the targets. Combining all previous 20 measurements of β and our six and transforming them into a distribution of ψ we find that between about 45 and 85% of hot Jupiters have ψ > 30 • . Conclusions. Most hot Jupiters are misaligned, with a large variety of spin-orbit angles. We find observations and predictions using the Kozai mechanism match well. If these observational facts are confirmed in the future, we may then conclude that most hot Jupiters are formed from a dynamical and tidal origin without the necessity to use type I or II migration. At present, standard disc migration cannot explain the observations without invoking at least another additional process.
We present near-UV transmission spectroscopy of the highly irradiated transiting exoplanet WASP-12b, obtained with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST). The spectra cover three distinct wavelength ranges:NUVA (2539-2580 Å); NUVB (2655-2696 Å); and NUVC (2770-2811 Å). Three independent methods all reveal enhanced transit depths attributable to absorption by resonance lines of metals in the exosphere of WASP-12b. Light curves of total counts in the NUVA and NUVC wavelength ranges show a detection at a 2.5σ level. We detect extra absorption in the Mg II λλ2800 resonance line cores at the 2.8σ level.The NUVA, NUVB and NUVC light curves imply effective radii of 2.69±0.24 R J , 2.18±0.18 R J , and 2.66±0.22 R J respectively, suggesting the planet is surrounded by an absorbing cloud which overfills the Roche lobe. We detect enhanced transit depths at the wavelengths of resonance lines of neutral sodium, tin and manganese, and at singly ionised ytterbium, scandium, manganese, aluminum, vanadium and magnesium. We also find the statistically expected number of anomalous transit depths at wavelengths not associated with any known resonance line. Our data are limited by photon noise, but taken as a whole the results are strong evidence for an extended absorbing exosphere surrounding the planet. The NUVA data exhibits an early ingress, contrary to model expectations; we speculate this could be due to the presence of a disk of previously stripped material. Subject headings: stars: individual (WASP-12) 1 http://archive.stsci.edu/ 2 See the COS Data Handbook for more information on CALCOS:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.