An evolutionary algorithm is presented for the automated calibration of the continuous cellular automaton for the simulation of isotropic and anisotropic wet chemical etching of silicon in as many as 31 widely different and technologically relevant etchants, including KOH, KOH+IPA, TMAH and TMAH+Triton, in various concentrations and temperatures. Based on state-of-the-art evolutionary operators, we implement a robust algorithm for the simultaneous optimization of roughly 150 microscopic removal rates based on the minimization of a cost function with four quantitative error measures, including (i) the error between simulated and experimental macroscopic etch rates for numerous surface orientations all over the unit sphere, (ii) the error due to underetching asymmetries and floor corrugation features observed in simulated silicon samples masked using a circular pattern, (iii) the error associated with departures from a step-flow-based hierarchy in the values of the microscopic removal rates, and (iv) the error associated with deviations from a step-flow-based clustering of the microscopic removal rates. For the first time, we present the calibration and successful simulation of two technologically relevant CMOS compatible etchants, namely TMAH and, especially, TMAH+Triton, providing several comparisons between simulated and experimental MEMS structures based on multi-step etching in these etchants.
Presently, dynamic surface-based models are required to contain increasingly larger numbers of points and to propagate them over longer time periods. For large numbers of surface points, the octree data structure can be used as a balance between low memory occupation and relatively rapid access to the stored data. For evolution rules that depend on neighborhood states, extended simulation periods can be obtained by using simplified atomistic propagation models, such as the Cellular Automata (CA). This method, however, has an intrinsic parallel updating nature and the corresponding simulations are highly inefficient when performed on classical Central Processing Units (CPUs), which are designed for the sequential execution of tasks. In this paper, a series of guidelines is presented for the efficient adaptation of octree-based, CA simulations of complex, evolving surfaces into massively parallel computing hardware. A Graphics Processing Unit (GPU) is used as a cost-efficient example of the parallel architectures. For the actual simulations, we consider the surface propagation during anisotropic wet chemical etching of silicon as a computationally challenging process with a wide-spread use in microengineering applications. A continuous CA model that is intrinsically parallel in nature is used for the time evolution. Our study strongly indicates that parallel computations of dynamically evolving surfaces simulated using CA methods are significantly benefited by the incorporation of octrees as support data structures, substantially decreasing the overall computational time and memory usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.