Immunogold staining and electron microscopy show that IL-2 receptor ␣-subunits exhibit nonrandom surface distribution on human T lymphoma cells. Analysis of interparticle distances reveals that this clustering on the scale of a few hundred nanometers is independent of the presence of IL-2 and of the expression of the IL-2R -subunit. Clustering of IL-2R␣ is confirmed by confocal microscopy, yielding the same average cluster size, Ϸ600 -800 nm, as electron microscopy. HLA class I and II and CD48 molecules also form clusters of the same size. Disruption of cholesterol-rich lipid rafts with filipin or depletion of membrane cholesterol with methyl--cyclodextrin results in the blurring of cluster boundaries and an apparent dispersion of clusters for all four proteins. Interestingly, the transferrin receptor, which is thought to be located outside lipid rafts, exhibits clusters that are only 300 nm in size and are less affected by modifying the membrane cholesterol content. Furthermore, transferrin receptor clusters hardly colocalize with IL-2R␣, HLA, and CD48 molecules (crosscorrelation coefficient is 0.05), whereas IL-2R␣ colocalizes with both HLA and CD48 (crosscorrelation coefficient is between 0.37 and 0.46). This coclustering is confirmed by electron microscopy. The submicron clusters of IL-2R␣ chains and their coclustering with HLA and CD48, presumably associated with lipid rafts, could underlie the efficiency of signaling in lymphoid cells.IL-2 receptor ͉ HLA glycoproteins ͉ transferrin receptor ͉ receptor clustering ͉ electron microscopy
Membrane proteins of cytotoxic T cells specifically reorganize to form an immunological synapse (IS) on interaction with their specific target. In this paper, we investigated the redistribution of Kv1.3 channels, which are the dominant voltage-gated potassium channels, in the plasma membrane of allogen-activated human cytotoxic T lymphocytes (CTLs) on interacting with their specific target cells. Kv1.3 channels bearing a FLAG epitope were expressed in the CTLs and the cell-surface distribution of fluorescently labeled ion channels was determined from confocal laser-scanning microscopy images. FLAG epitope-tagged Kv1.3 channels showed a patchy distribution in CTLs not engaged with target cells, whereas the channels were accumulated in the IS formed between CTLs and specific target lymphocytes. Localization of Kv1.3 channels in the IS might open an unrevealed possibility in the regulation of ion channel activity by signaling molecules accumulated in the IS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.