We study the properties of massive, galactic-scale outflows of molecular gas and investigate their impact on galaxy evolution. We present new IRAM PdBI CO(1-0) observations of local ULIRGs and QSO hosts: clear signature of massive and energetic molecular outflows, extending on kpc scales, is found in the CO(1-0) kinematics of four out of seven sources, with measured outflow rates of several 100 M yr −1 . We combine these new observations with data from the literature, and explore the nature and origin of massive molecular outflows within an extended sample of 19 local galaxies. We find that starburst-dominated galaxies have an outflow rate comparable to their SFR, or even higher by a factor of ∼2-4, implying that starbursts can indeed be effective in removing cold gas from galaxies. Nevertheless, our results suggest that the presence of an AGN can boost the outflow rate by a large factor, which is found to increase with the L AGN /L bol ratio. The gas depletion time-scales due to molecular outflows are anti-correlated with the presence and luminosity of an AGN in these galaxies, and range from a few hundred million years in starburst galaxies, down to just a few million years in galaxies hosting powerful AGNs. In quasar hosts the depletion time-scales due to the outflow are much shorter than the depletion time-scales due to star formation. We estimate the outflow kinetic power and find that, for galaxies hosting powerful AGNs, it corresponds to about 5% of the AGN luminosity, as expected by models of AGN feedback. Moreover, we find that momentum rates of about 20 L AGN /c are common among the AGN-dominated sources in our sample. For "pure" starburst galaxies our data tentatively support models in which outflows are mostly momentum-driven by the radiation pressure from young stars onto dusty clouds. Overall, our results indicate that, although starbursts are effective in powering massive molecular outflows, the presence of an AGN may strongly enhance such outflows and, therefore, have a profound feedback effect on the evolution of galaxies, by efficiently removing fuel for star formation, hence quenching star formation.
We have studied the properties of giant star forming clumps in five z~2 starforming disks with deep SINFONI AO spectroscopy at the ESO VLT 1 . The clumps reside in disk regions where the Toomre Q-parameter is below unity, consistent with their being bound and having formed from gravitational instability. Broad Hα/ [NII] line wings demonstrate that the clumps are launching sites of powerful outflows. The inferred outflow rates are comparable to or exceed the star formation rates, in one case by a factor of eight. Typical clumps may lose a fraction of their original gas by feedback in a few hundred million years, allowing them to migrate into the center. inferred gas phase oxygen abundance are broadly consistent with inside-out growing disks, and/or with inward migration of the clumps..
We present the KMOS 3D survey, a new integral field survey of over 600 galaxies at 0.7 < z < 2.7 using KMOS at the Very Large Telescope. The KMOS 3D survey utilizes synergies with multi-wavelength ground-and spacebased surveys to trace the evolution of spatially resolved kinematics and star formation from a homogeneous sample over 5 Gyr of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass (M * ) and rest-frame (U − V ) − M * planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first-year of data we detect Hα emission in 191 M * = 3 × 10 9 -7 × 10 11 M galaxies at z = 0.7-1.1 and z = 1.9-2.7. In the current sample 83% of the resolved galaxies are rotation dominated, determined from a continuous velocity gradient and v rot /σ 0 > 1, implying that the star-forming "main sequence" is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Hα kinematic maps indicate that at least ∼70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous integral field spectroscopy studies at z 0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km s −1 at z ∼ 2.3 to 25 km s −1 at z ∼ 0.9. Combined with existing results spanning z ∼ 0-3, we show that disk velocity dispersions follow an evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally stable disk theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.