Silages prepared from pure stands of ryegrass, alfalfa, white clover, and red clover over two successive year were offered to lactating dairy cows in two feeding experiments. Proportional mixtures of all cuts prepared in a yr were used to ensure that the forage treatments were representative of the crop. Additional treatments involved mixtures of grass silage with either white clover silage or red clover silage (50/50, on a DM basis). Silages were prepared in round bales, using a biological inoculant additive, and wilting for up to 48 h. Although the legumes were less suited to silage-making than grass, because of their higher buffering capacity and lower water-soluble carbohydrate content, all silages were well-fermented. A standard concentrate was offered at a flat-rate (8 kg/d in yr 1, and 4 or 8 kg/d in yr 2). All of the legume silages led to higher DM intake and milk yields than for the grass silage, with little effect on milk composition. Intake and production responses to legumes were similar at the two levels of concentrate feeding and with forage mixtures they were intermediate to those for the separate forages. An additional benefit of the clover silages, particularly red clover silage, was the increase in levels of polyunsaturated fatty acids, particularly alpha-linolenic acid, in milk. Legume silages also led to a lower palmitic acid percentage in milk. The efficiency of conversion of feed N into milk N declined with increasing levels of legume silage. White clover silage led to a higher N-use efficiency when the effect of N intake level is taken into account.
Two experiments were conducted to investigate the basis for higher voluntary intakes and increased alpha-linolenic acid content in milk from cows offered clover silages. Six cows with rumen and duodenal cannulae were used in a four-period changeover-design experiment. Cows received 8 kg/d of dairy concentrate and had ad libitum access to one of six silage treatments: grass, red clover, white clover, alfalfa, and 50/50 (dry matter basis) mixtures of grass with red clover or white clover. The rumen fermentability of grass, red clover, white clover, and grass/red clover silages was also evaluated in a nylon bag study. Legume silages led to increased dry matter intake and milk production in comparison with grass silage. There was no significant effect of legume silages on rumen pH and volatile fatty acid concentrations, but a significant increase in rumen ammonia concentration with the legume silages, reflecting their higher protein content. The inclusion of white clover or alfalfa silage, but not red clover silage, in diets led to an increase in molar proportions of isobutyric, iso-valeric, and n-valeric acids in comparison with diets based on grass silage. Rumen fill was significantly lower, and rumen passage rates were significantly higher for cows offered alfalfa or white clover silages. However, the markedly different particle size distribution of rumen contents with these feeds suggests very different mechanisms for the high intake characteristics: high rates of particle breakdown and passage with alfalfa, and high rates of fermentation and passage with white clover. Microbial energetic efficiency (grams microbial N per kilogram organic matter apparently digested in the rumen) was highest for cows offered alfalfa silage, intermediate for clover silage, and lowest for cows offered grass silage. These differences reflect the higher rumen outflow rates for legume silages in comparison with grass silage. However, the effect of these differences on N-use efficiency (feed to milk) was probably quite small in comparison with effects of N intake. Although the biohydrogenation of alpha-linolenic acid was still high for red clover silage (86.1% compared with 94.3% for grass silage), there was a 240% increase in the proportion of alpha-linolenic acid passing through the rumen. This explains the increased recovery of alpha-linolenic acid from feed into milk with diets based on red clover silage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.