The theoretical and experimental development of stellarators has removed some of the specific deficiencies of this configuration, viz., the limitations in β, the high neoclassical transport, and the low collisionless confinement of α particles. These optimized stellarators can best be realized with a modular coil system. The W7-AS experiment [Plasma Phys. Controlled Fusion 31, 1579 (1989)] has successfully demonstrated two aspects of advanced stellarators, the improved equilibrium and the modular coil concept. Stellarator optimization will much more viably be demonstrated by W7-X [Plasma Physics and Controlled Fusion Research, Proceedings of the 12th International Conference, Nice, 1988 (IAEA, Vienna, 1989), Vol. 2, p. 369], the successor experiment presently under design. Optimized stellarators seem to offer an independent reactor option. In addition, they supplement, in a unique form, the toroidal confinement fusion program, e.g., energy transport is anomalous in stellarators too, but possibly more easily understandable in the frame of existing theoretical concepts than in tokamaks.
Wendelstein 7-AS was the first modular stellarator device to test some basic elements of stellarator optimization: a reduced Shafranov shift and improved stability properties resulted in β-values up to 3.4% (at 0.9 T). This operational limit was determined by power balance and impurity radiation without noticeable degradation of stability or a violent collapse. The partial reduction of neoclassical transport could be verified in agreement with calculations indicating the feasibility of the concept of drift optimization. A full neoclassical optimization, in particular a minimization of the bootstrap current was beyond the scope of this project. A variety of non-ohmic heating and current drive scenarios by ICRH, NBI and in particular, ECRH were tested and compared
Magnetohydrodynamic (MHD) instabilities in the Wendelstein 7-AS stellarator (W7-AS) [G. Grieger et al., Phys. Fluids B 4, 2081 (1992)] are characterized experimentally in various plasma parameter regimes and heating scenarios. The observations are compared with theoretical predictions for particular cases. In the high-β range (〈β〉⩽2%) no clear evidence of a stability β-limit could be found yet. In the lower β regime fast particle driven global Alfvén modes are the most important instabilities during neutral beam injection (NBI). Besides of coherent modes with almost no effect on the plasma performance additional Alfvén modes appear at higher frequencies up to 400 kHz, which show nonlinear phenomena-like bursting, frequency chirping, and MHD induced energy and fast particle losses. The activity of edge localized modes (ELMs) is investigated in NBI heated discharges. The issue of current driven instabilities and their potential stabilization by a stellarator field has been investigated with regard to the design of compact hybrid stellarator systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.