The overall objective of this guideline is to provide up-to-date, evidence-based recommendations for the diagnosis and surveillance of all symptoms in children and adults with either basal cell naevus syndrome (BCNS), a clinical suspicion of BCNS, or a parent with BCNS. In the last two groups, the guidelines should be followed until the diagnosis of BCNS can be rejected with certainty. The guideline aims to:• Update and expand on the previous guidelines by an appraisal of all relevant literature from January 2011 up to January 2021• Address important, practical, clinical questions relating to the primary guideline objective• Provide guideline recommendations • Discuss potential developments and future directions The guideline is presented as a detailed review with highlighted recommendations for practical use in the clinic by dermatologists and other healthcare professionals, including general practitioners, clinical geneticists, paediatricians, ophthalmologists, craniomaxillofacial surgeons, neurologists, cardiologists and psychologists. ExclusionsThe guideline does not cover therapeutic recommendations for (nondermatological) symptoms, as the guideline mainly focuses on screening and follow-up of symptoms. Therapeutic recommendations for basal cell carcinomas (BCCs) in general have been published in international BCC guidelines. 1,2 Stakeholder involvement and peer reviewThe guideline was developed at the Maastricht University Medical Centre (MUMC+), the Dutch BCNS expert centre accredited
Background: In this systematic review we investigate which instrumented measurements are available to assess motor impairments, related activity limitations and participation restrictions in children and young adults with dyskinetic cerebral palsy. We aim to classify these instrumented measurements using the categories of the international classification of functioning, disability and health for children and youth (ICF-CY) and provide an overview of the outcome parameters. Methods: A systematic literature search was performed in November 2019. We electronically searched Pubmed, Embase and Scopus databases. Search blocks included (a) cerebral palsy, (b) athetosis, dystonia and/or dyskinesia, (c) age 2-24 years and (d) instrumented measurements (using keywords such as biomechanics, sensors, smartphone, and robot). Results: Our search yielded 4537 articles. After inspection of titles and abstracts, a full text of 245 of those articles were included and assessed for further eligibility. A total of 49 articles met our inclusion criteria. A broad spectrum of instruments and technologies are used to assess motor function in dyskinetic cerebral palsy, with the majority using 3D motion capture and surface electromyography. Only for a small number of instruments methodological quality was assessed, with only one study showing an adequate assessment of test-retest reliability. The majority of studies was at ICF-CY function and structure level and assessed control of voluntary movement (29 of 49) mainly in the upper extremity, followed by assessment of involuntary movements (15 of 49), muscle tone/motor reflex (6 of 49), gait pattern (5 of 49) and muscle power (2 of 49). At ICF-CY level of activities and participation hand and arm use (9 of 49), fine hand use (5 of 49), lifting and carrying objects (3 of 49), maintaining a body position (2 of 49), walking (1 of 49) and moving around using equipment (1 of 49) was assessed. Only a few methods are potentially suitable outside the clinical environment (e.g. inertial sensors, accelerometers). Conclusion: Although the current review shows the potential of several instrumented methods to be used as objective outcome measures in dyskinetic cerebral palsy, their methodological quality is still unknown. Future development should focus on evaluating clinimetrics, including validating against clinical meaningfulness. New technological developments should aim for measurements that can be applied outside the laboratory.
Several de novo variants in the KIF1A gene have been reported to cause a complicated form of hereditary spastic paraplegia. Additional symptoms include cognitive impairment and varying degrees of peripheral neuropathy, epilepsy, decreased visual acuity, and ataxia. We describe four patients (ages 10–18 years), focusing on their mobility and gait characteristics. Two patients were not able to walk without assistance and showed a severe abnormal gait pattern, crouch gait. At examination, severe contractures were found.In addition to describing the different phenotypes with specific attention to gait in our cases, we reviewed known KIF1A mutations and summarized their associated phenotypes.We conclude that mobility and cognition are severely affected in children with spastic paraplegia due to de novo KIF1A mutations. Deterioration in mobility is most likely due to progressive spasticity, muscle weakness, and the secondary development of severe contractures, possibly combined with an additional progressive polyneuropathy. Close follow-up and treatment of these patients are warranted.
Early brain lesions which produce cerebral palsy (CP) may affect the development of walking. It is unclear whether or how neuromuscular control, as evaluated by muscle synergy analysis, differs in young children with CP compared to typically developing (TD) children with the same walking ability, before and after the onset of independent walking. Here we grouped twenty children with (high risk of) CP and twenty TD children (age 6.5–52.4 months) based on their walking ability, supported or independent walking. Muscle synergies were extracted from electromyography data of bilateral leg muscles using non-negative matrix factorization. Number, synergies’ structure and variability accounted for when extracting one (VAF1) or two (VAF2) synergies were compared between CP and TD. Children in the CP group recruited fewer synergies with higher VAF1 and VAF2 compared to TD children in the supported and independent walking group. The most affected side in children with asymmetric CP walking independently recruited fewer synergies with higher VAF1 compared to the least affected side. Our findings suggest that early brain lesions result in early alterations of neuromuscular control, specific for the most affected side in asymmetric CP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.