A long-standing prediction of nuclear models is the emergence of a region of long-lived, or even stable, superheavy elements beyond the actinides. These nuclei owe their enhanced stability to closed shells in the structure of both protons and neutrons. However, theoretical approaches to date do not yield consistent predictions of the precise limits of the 'island of stability'; experimental studies are therefore crucial. The bulk of experimental effort so far has been focused on the direct creation of superheavy elements in heavy ion fusion reactions, leading to the production of elements up to proton number Z = 118 (refs 4, 5). Recently, it has become possible to make detailed spectroscopic studies of nuclei beyond fermium (Z = 100), with the aim of understanding the underlying single-particle structure of superheavy elements. Here we report such a study of the nobelium isotope 254No, with 102 protons and 152 neutrons--the heaviest nucleus studied in this manner to date. We find three excited structures, two of which are isomeric (metastable). One of these structures is firmly assigned to a two-proton excitation. These states are highly significant as their location is sensitive to single-particle levels above the gap in shell energies predicted at Z = 114, and thus provide a microscopic benchmark for nuclear models of the superheavy elements.
Article:Bree, N., Wrzosek-Lipska, K., Petts, A. et al. (67 more authors) (2014) Shape coexistence in the neutron-deficient even-even 182-188Hg isotopes studied via Coulomb excitation.
For the first time, differential cross section of the 16 Oϩ 12 C elastic scattering at E lab ϭ170, 200, 230, and 260 MeV has been measured over a wide angular range which covers both diffractive and refractive regions. In addition, the recent data at 132 MeV for this system have been remeasured with much better statistics. A well developed rainbow structure has been observed, where up to three Airy minima could be identified in each measured angular distribution. The optical model analysis of these data was done using the conventional Woods-Saxon shape for the optical potential as well as that given by the folding model. The Airy systematics enabled us to suggest a realistic family of the optical potential for the 16 Oϩ 12 C system, which consistently describes the new data as well as the data measured earlier at incident energies of 608 and 1503 MeV. Our results show that the 16 Oϩ 12 C system is a very suitable heavy-ion combination for the study of refractive phenomena, which can give important information on the nucleus-nucleus potential at small distances.
3The general phenomenon of shell structure in atomic nuclei has been understood since the pioneering work of Goeppert-Mayer, Haxel, Jensen and Suess [1].They realized that the experimental evidence for nuclear magic numbers could be explained by introducing a strong spin-orbit interaction in the nuclear shell model potential.However, our detailed knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), the unique nature of the atomic nucleus as an object composed of two distinct types of fermions can be expressed as enhanced correlations arising between neutrons and protons occupying orbitals with the same quantum numbers. Such correlations have been predicted to favor a new type of nuclear superfluidity; isoscalar neutron-proton pairing [2][3][4][5][6], in addition to normal isovector pairing (see Fig. 1). Despite many experimental efforts these predictions have not been confirmed. Here, we report on the first observation of excited states in N = Z = 46 nucleus 92 Pd. Gamma rays emitted following the 58 Ni( 36 Ar,2n) 92 Pd fusionevaporation reaction were identified using a combination of state-of-the-art highresolution -ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutronproton coupling scheme, different from the previous prediction [2][3][4][5][6]. We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling [7,8]) in the ground and low-lying excited states of the heaviest N = Z nuclei. The strong isoscalar neutron-proton correlations in these N = Z nuclei are predicted to have a considerable impact on their level structures, and to influence the dynamics of the stellar rapid proton capture nucleosynthesis process.For all known nuclei, including those residing along the N = Z line up to around mass 80, a detailed analysis of their properties such as binding energies [9] and the spectroscopy of the excited states [10] strongly suggests that normal isovector (T = 1) pairing is dominant at low excitation energies. On the other hand, there are long standing predictions for a change in the heavier N = Z nuclei from a nuclear superfluid dominated by isovector pairing to a structure where isoscalar (T = 0) neutron-proton (np) pairing has a major influence as the mass number increases towards the exotic doubly magic nucleus 100 Sn [2-6], the heaviest N = Z nucleus to be bound. N = Z nuclei with mass number > 90 can only be produced in the laboratory with very low The two-neutron (2n) evaporation reaction channel following formation of the 94 Pd compound nucleus, leading to 92 Pd, was very weakly populated with a relative yield of less than 10 −5 of the total fusion cross section. Gamma rays from decays of excited states in 92 Pd were identified by comparing γ-ray spectra in coincidence with two emitted neutrons and no charged particles with γ-ray spectra in coincidence with oth...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.