The lycophyte genus Selaginella alone constitutes the family Selaginellaceae, the largest of the lycophyte families. The genus is estimated to contain 700-800 species distributed on all continents except Antarctica, with highest species diversity in tropical and subtropical regions. The monophyly of Selaginella in this broad sense has rarely been doubted, whereas its intrageneric classification has been notoriously contentious. Previous molecular studies were based on very sparse sampling of Selaginella (up to 62 species) and often used DNA sequence data from one genome. In the present study, DNA sequences of one plastid (rbcL) and one nuclear (ITS) locus from 394 accessions representing approximately 200 species of Selaginella worldwide were used to infer a phylogeny using maximum likelihood, Bayesian inference and maximum parsimony methods. The study identifies strongly supported major clades and well resolves relationships among them. Major results include: (i) six deep-level clades are discovered representing the deep splits of Selaginella; and (ii) 20 major clades representing 20 major evolutionary lineages are identified, which differ from one another in molecular, macro-morphological, ecological and spore features, and/or geographical distribution.
The infrageneric relationships and taxonomy of the largest fern genus, Asplenium (Aspleniaceae), have remained poorly understood. Previous studies have focused mainly on specific species complexes involving a few or dozens of species only, or have achieved a large taxon sampling but only one plastid marker was used. In the present study, DNA sequences from six plastid markers (atpB, rbcL, rps4, rps4-trnS, trnL and trnL-F) of 1030 accessions (616 of them newly sequenced here) representing c. 420 species of Asplenium (60% of estimated species diversity), 16 species of Hymenasplenium, three Diplaziopsidaceae, and four Rhachidosoraceae were used to produce the largest genus-level phylogeny yet for ferns. Our major results include: (i) Asplenium as broadly circumscribed is monophyletic based on our inclusion of representatives of 32 of 38 named segregate genera; (ii) 11 major clades in Asplenium are identified, and their relationships are mostly well-resolved and strongly supported; (iii) numerous species, unsampled in previous studies, suggest new relationships and numerous cryptic species and species complexes in Asplenium; and (iv) the accrued molecular evidence provides an essential foundation for further investigations of complex patterns of geographical diversification, speciation and reticulate evolution in this family.
Grammitidoideae are the largest subfamily in Polypodiaceae and contain about 911 species. Progress has been made in understanding the overall phylogeny and generic boundaries in the light of recent molecular works. However, the majority of species, especially Asian species, and some critical type species of genera remain unsampled. In this study, a dataset of six plastid markers of 1003 (112 new) accessions representing ca. 412 species of Grammitidoideae including the type species of Ctenopterella, Grammitis, Moranopteris, Radiogrammitis, and Themelium, was assembled to infer a phylogeny. Our major results include: (1) the type species of Grammitis is successfully sequenced using a next‐generation sequencing technique and is resolved in Grammitis s.str. as expected; (2) Ctenopterella is found to be polyphyletic and a new clade consisting of C. khaoluangensis is resolved as sister to Tomophyllum; (3) the type species of Ctenopterella is resolved in a clade sister to the C. lasiostipes clade; (4) Oreogrammitis is found to be polyphyletic and three clades outside of the core Oreogrammitis are identified containing O. subevenosa and allies, O. orientalis, and O. beddomeana (+ O. cf. beddomeana); (5) Prosaptia is found to be paraphyletic with P. nutans being sister to a clade containing the rest of Prosaptia and Archigrammitis; (6) the intergeneric and major relationships within the Asia‐Pacific clade are well resolved and strongly supported except for a few branches; (7) extensive cryptic speciation is detected in the Asia‐Pacific clade; and (8) based on the polyphyly of Ctenopterella we describe three new genera, Boonkerdia, Oxygrammitis, and Rouhania, for species formerly in Ctenopterella; because the type species of Grammitis belongs to Grammitis s.str., we describe five new genera, Aenigmatogrammitis, Grammitastrum (stat. nov.), Howeogrammitis, Nanogrammitis, and Thalassogrammitis for species formerly in Grammitis s.l. A key to the 35 Old‐World genera is given, a taxonomic treatment is presented, and the morphology of all new genera is shown with either a color plate and/or a line drawing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.