A global monitoring system for atmospheric xenon radioactivity is being established as part of the International Monitoring System that will verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) once the treaty has entered into force. This paper studies isotopic activity ratios to support the interpretation of observed atmospheric concentrations of (135)Xe, (133m)Xe, (133)Xe and (131m)Xe. The goal is to distinguish nuclear explosion sources from civilian releases. Simulations of nuclear explosions and reactors, empirical data for both test and reactor releases as well as observations by measurement stations of the International Noble Gas Experiment (INGE) are used to provide a proof of concept for the isotopic ratio based method for source discrimination
Variations of the cosmogenic radionuclide 7Be in the global atmosphere are driven by cooperation of processes of its production, air transports, and removal. We use a combination of the Goddard Institute for Space Studies ModelE and the OuluCRAC:7Be production model to simulate the variations in the 7Be concentration in the atmosphere for the period from 1 January to 28 February 2005. This period features significant synoptic variability at multiple monitoring stations around the globe and spans an extreme solar energetic particle (SEP) event that occurred on 20 January. Using nudging from observed horizontal winds, the model correctly reproduces the overall level of the measured 7Be concentration near ground and a great deal of the synoptic variability at timescales of 4 days and longer. This verifies the combined model of production and transport of the 7Be radionuclide in the atmosphere. The impact of an extreme SEP event of January 2005 is seen dramatically in polar stratospheric 7Be concentration but is small near the surface (about 2%) and indistinguishable given the amount of intrinsic variability and the uncertainties of the surface observations.
Between 21–25 October 2006, elevated levels of atmospheric xenon‐133 were observed in Yellowknife (Canada). This station is located in an area where the background level of radioxenon is very low. The few measurements of xenon‐133 above background in the last three years have been traced back to known nuclear facilities. The measurements in late October could not be linked to them. According to backward atmospheric transport models (ATM), the air that contained the measured radioxenon could have originated from the Korean Peninsula. On 9 October 2006, seismic networks world‐wide recorded an event with characteristics of an underground explosion in the Democratic Peoples Republic of Korea. Forward ATM was performed using these coordinates. The results were consistent with the measurements in Yellowknife, more than 7000 km away. The order of magnitude of the amount measured is consistent with simple leak scenarios assumed for a low yield underground nuclear explosion on the Korean peninsula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.