We have performed first-principles calculations of the electronic structure of ZnO, and applied them to the determination of structural and lattice-dynamical properties and their dependence on pressure. The dynamical matrices have been obtained for the wurtzite, zinc-blende, and rocksalt modifications with several lattice parameters optimized for pressures up to 12 GPa. These matrices are employed to calculate the one-phonon densities of states ͑DOS͒ and the two-phonon DOS associated with either sums or differences of phonons. These results provide the essential tools to analyze the effect of isotope-induced mass disorder and anharmonicity on phonon linewidths, which we discuss here and compare with experimental data from Raman spectroscopy, including first-and second-order spectra. Agreement of calculated properties with experimental results improves considerably when the renormalization due to anharmonicity is subtracted from the experimental data.
We have theoretically investigated, by ab initio techniques, the phonon properties of several semiconductors with chalcopyrite structure. Comparison with experiments has led us to distinguish between materials with d electrons in the valence band (e.g., CuGaS 2 , AgGaS 2 ) and those without d electrons (e.g., ZnSnAs 2 ). The former exhibit a rather peculiar nonmonotonic temperature dependence of the energy gap which, so far, has resisted cogent theoretical description. We analyze this nonmonotonic temperature dependence by fitting two Bose-Einstein oscillators with weights of opposite sign leading to an increase at low temperatures and a decrease at higher temperatures and find that the energy of the former correlates well with characteristic peaks in the phonon density of states associated with low-energy vibrations of the d-electron elements. We hope that this work will encourage theoretical investigations of the electron-phonon interaction in this direction, especially of the current ab initio type.
Phonon linewidths can exhibit a large variation when either pressure or isotopic masses are changed. These effects yield detailed information about the mechanisms responsible for linewidths and lifetimes, e.g., anharmonicity or isotopic disorder. We report Raman measurements of the linewidth of the upper E2 phonons of ZnO crystals with several isotopic compositions and their dependence on pressure. Changes by a factor of 12 are observed at a given temperature. Comparison with calculated densities of one-phonon states, responsible for isotope scattering, and of two-phonon states, responsible for anharmonic decay, yields a consistent picture of these phenomena. Isotopic disorder broadening by 7 cm(-1) is found in samples with mixed 16O-18O content, whereas the anharmonic processes involve decay into sums and differences of two phonons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.