We present an ultrafast neural network (NN) model, QLKNN, which predicts core tokamak transport heat and particle fluxes. QLKNN is a surrogate model based on a database of 300 million flux calculations of the quasilinear gyrokinetic transport model QuaLiKiz. The database covers a wide range of realistic tokamak core parameters. Physical features such as the existence of a critical gradient for the onset of turbulent transport were integrated into the neural network training methodology. We have coupled QLKNN to the tokamak modelling framework JINTRAC and rapid control-oriented tokamak transport solver RAPTOR. The coupled frameworks are demonstrated and validated through application to three JET shots covering a representative spread of H-mode operating space, predicting turbulent transport of energy and particles in the plasma core. JINTRAC-QLKNN and RAPTOR-QLKNN are able to accurately reproduce JINTRAC-QuaLiKiz T i,e and n e profiles, but 3 to 5 orders of magnitude faster. Simulations which take hours are reduced down to only a few tens of seconds. The discrepancy in the final source-driven predicted profiles between QLKNN and QuaLiKiz is on the order 1%-15%. Also the dynamic behaviour was well captured by QLKNN, with differences of only 4%-10% compared to JINTRAC-QuaLiKiz observed at mid-radius, for a study of density buildup following the L-H transition. Deployment of neural network surrogate models in multi-physics integrated tokamak modelling is a promising route towards enabling accurate and fast tokamak scenario optimization, Uncertainty Quantification, and control applications.
A power-balance model, with radiation losses from impurities and neutrals, gives a unified description of the density limit (DL) of the stellarator, the L-mode tokamak, and the reversed field pinch (RFP). The model predicts a Sudo-like scaling for the stellarator, a Greenwald-like scaling, , for the RFP and the ohmic tokamak, a mixed scaling, , for the additionally heated L-mode tokamak. In a previous paper (Zanca et al 2017 Nucl. Fusion 57 056010) the model was compared with ohmic tokamak, RFP and stellarator experiments. Here, we address the issue of the DL dependence on heating power in the L-mode tokamak. Experimental data from high-density disrupted L-mode discharges performed at JET, as well as in other machines, are taken as a term of comparison. The model fits the observed maximum densities better than the pure Greenwald limit.
The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at βN ~ 1.8 and n/nGW ~ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D–T campaign and 14 MeV neutron calibration strategy are reviewed.
The present paper offers an overview of the potential of ion cyclotron resonance heating (ICRH) or radio frequency (RF) heating for the DEMO machine. It is found that various suitable heating schemes are available. Similar to ITER and in view of the limited bandwidth of about 10M Hz that can be achieved to ensure optimal functioning of the launcher, it is proposed to make core second harmonic tritium heating the key ion heating scheme, assisted by fundamental cyclotron heating 3 He in the early phase of the discharge; for the present design of DEMO-with a static magnetic field strength of B o = 5.855T-that places the T and 3 He layers in the core for f = 60M Hz and suggests to center the bandwidth around that main operating frequency. In line with earlier studies for hot, dense plasmas in large-size magnetic confinement machines it is shown that good single pass absorption is achieved but that the size as well as operating density and temperature of the machine cause the electrons to absorb a non-negligible fraction of the power away from the core when core ion heating is aimed at. Current drive and alternative heating options are briefly discussed and a dedicated computation is done for the traveling wave antenna, proposed for DEMO in view of its compatibility with substantial antenna-plasma distances. The various tasks that ICRH can fulfill are briefly listed. Finally, the impact of transport and the sensitivity of the obtained results to changes in the machine parameters is commented on.
In the framework of the EUROfusion Programme, EU is preparing the conceptual design of the inner fuel cycle of a pulsed tokamak DEMO. This paper illustrates a quantified process to shape a R&D programme that exploits as much as possible previous R&D. In an initial step, the high-level requirements are collected and a novel DEMO inner fuel cycle architecture with its three subsystems vacuum pumping, matter injection (fuelling and injection of plasma enhancement gases) and tritium systems (tritium plant and breeder coolant purification) is delineated, driven by the DEMO key challenge to reduce tritium inventory. Then, a technology survey is carried out to review potential existing solutions for the required process functions and to assess their maturity and risks. Finally, a decision-making scheme is applied to select the most promising candidates. ITER technology is exploited where possible. As a primary result, a fuel cycle architecture is suggested with an advanced tritium plant that avoids full isotope separation in the main loop and with a Direct Internal Recycling path in the vacuum systems to shorten cycle times. For core fuelling, classical inboard pellet injection technology is selected, in principle similar to that proposed for ITER but aiming for higher launch speeds to achieve deep fuelling of the DEMO plasma. Based on these findings, a tailored R&D programme is shaped that tackles the key questions until 2020.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.