A self core reset and zero voltage switching (ZVS) forward converter topology is presented in this paper. By employing a simple auxiliary circuit, the proposed topology is able to achieve self reset of the power transformer without the use of the conventional tertiary reset winding, and its main switch can be turned on and turned off under ZVS independent of line and load conditions. This simplifies the power transformer, and the switching losses are substantially removed to improve the overall efficiency. Steady state analysis of the circuit is performed. Based on the analysis, a design procedure is presented, and the effects of the circuit parameters on the flux excursion of the power transformer are investigated to make sure self reset can be achieved without increasing the core losses. Simulation and experiment on a 5 V, 100 W prototype circuit operated at 200 kHz are carried out to verify the design. About 5% higher overall efficiency is obtained in the prototype converter than in its conventional counterpart.Index Terms-Forward converter topology, power transformer, self-driven synchronous rectifiers, soft switching, zero voltage switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.