No abstract
Quasars are galaxies hosting accreting supermassive black holes; due to their brightness, they are unique probes of the early universe. To date, only a few quasars have been reported at (<800 Myr after the big bang). In this work, we present six additional quasars discovered using the Pan-STARRS1 survey. We use a sample of 15 quasars to perform a homogeneous and comprehensive analysis of this highest-redshift quasar population. We report four main results: (1) the majority of quasars show large blueshifts of the broad C iv λ1549 emission line compared to the systemic redshift of the quasars, with a median value ∼3× higher than a quasar sample at ; (2) we estimate the quasars’ black hole masses ( (0.3–5) × 109 M ⊙) via modeling of the Mg ii λ2798 emission line and rest-frame UV continuum and find that quasars at high redshift accrete their material (with ) at a rate comparable to a luminosity-matched sample at lower redshift, albeit with significant scatter (0.4 dex); (3) we recover no evolution of the Fe ii/Mg ii abundance ratio with cosmic time; and (4) we derive near-zone sizes and, together with measurements for quasars from recent work, confirm a shallow evolution of the decreasing quasar near-zone sizes with redshift. Finally, we present new millimeter observations of the [C ii] 158 μm emission line and underlying dust continuum from NOEMA for four quasars and provide new accurate redshifts and [C ii]/infrared luminosity estimates. The analysis presented here shows the large range of properties of the most distant quasars.
We present a precise photometric calibration of the first 1.5 years of science imaging from the Pan-STARRS1 survey (PS1), an ongoing optical survey of the entire sky north of declination −30• in five bands. Building on the techniques employed by Padmanabhan et al. in the Sloan Digital Sky Survey (SDSS), we use repeat PS1 observations of stars to perform the relative calibration of PS1 in each of its five bands, simultaneously solving for the system throughput, the atmospheric transparency, and the large-scale detector flat field. Both internal consistency tests and comparison against the SDSS indicate that we achieve relative precision of <10 mmag in g, r, and i P1 , and ∼10 mmag in z and y P1 . The spatial structure of the differences with the SDSS indicates that errors in both the PS1 and SDSS photometric calibration contribute similarly to the differences. The analysis suggests that both the PS1 system and the Haleakala site will enable <1% photometry over much of the sky.
As of 2012 Jan 21, the Pan-STARRS 1 3π Survey has observed the 3/4 of the sky visible from Hawaii with a minimum of 2 and mean of 7.6 observations in 5 filters, g P1 ,r P1 ,i P1 ,z P1 ,y P1 . Now at the end of the second year of the mission, we are in a position to make an initial public release of a portion of this unprecedented dataset. This article describes the PS1 Photometric Ladder, Release 12.01 This is the first of a series of data releases to be generated as the survey coverage increases and the data analysis improves. The Photometric Ladder has rungs every hour in RA and at 4 intervals in declination. We will release updates with increased area coverage (more rungs) from the latest dataset until the PS1 survey and the final re-reduction are completed. The currently released catalog presents photometry of ∼ 1000 objects per square degree in the rungs of the ladder. Saturation occurs at g P1 , r P1 , i P1 ∼ 13.5; z P1 ∼ 13.0; and y P1 ∼ 12.0. Photometry is provided for stars down to g P1 , r P1 , i P1 ∼ 19.1 in the AB system. This data release depends on the rigid 'Ubercal' photometric calibration using only the photometric nights, with systematic uncertainties of (8.0, 7.0, 9.0, 10.7, 12.4) millimags in (g P1 ,r P1 ,i P1 ,z P1 ,y P1 ). Areas covered only with lower quality nights are also included, and have been tied to the Ubercal solution via relative photometry; photometric accuracy of the non-photometric regions is lower and should be used with caution.
Luminous quasars at > z 5.6 can be studied in detail with the current generation of telescopes and provide us with unique information on the first gigayear of the universe. Thus far, these studies have been statistically limited by the number of quasars known at these redshifts. Such quasars are rare, and therefore, wide-field surveys are required to identify them, and multiwavelength data are required to separate them efficiently from their main contaminants, the far more numerous cool dwarfs. In this paper, we update and extend the selection for thez 6 quasars presented in Bañados et al. (2014) using the Pan-STARRS1 (PS1) survey. We present the PS1 distant quasar sample, which currently consists of 124 quasars in the redshift range z 5.6 6.7 that satisfy our selection criteria. Of these quasars, 77 have been discovered with PS1, and 63 of them are newly identified in this paper. We present the composite spectra of the PS1 distant quasar sample. This sample spans a factor of ∼20 in luminosity and shows a variety of emission line properties. The number of quasars at > z 5.6 presented in this work almost doubles the previously known quasars at these redshifts, marking a transition phase from studies of individual sources to statistical studies of the high-redshift quasar population, which was impossible with earlier, smaller samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.