The identification of biomarkers that distinguish between aggressive and indolent forms of prostate cancer (PCa) is crucial for diagnosis and treatment. In this study, we used cultured cells derived from prostate tissue from patients with PCa to define a molecular mechanism underlying the most aggressive form of PCa that involves the functional activation of eNOS and HIFs in association with estrogen receptor β (ERβ). Cells from patients with poor prognosis exhibited a constitutively hypoxic phenotype and increased NO production. Upon estrogen treatment, formation of ERβ/eNOS, ERβ/HIF-1α, or ERβ/HIF-2α combinatorial complexes led to chromatin remodeling and transcriptional induction of prognostic genes. Tissue microarray analysis, using an independent cohort of patients, established a hierarchical predictive power for these proteins, with expression of eNOS plus ERβ and nuclear eNOS plus HIF-2α being the most relevant indicators of adverse clinical outcome. Genetic or pharmacologic modulation of eNOS expression and activity resulted in reciprocal conversion of the transcriptional signature in cells from patients with bad or good outcome, respectively, highlighting the relevance of eNOS in PCa progression. Our work has considerable clinical relevance, since it may enable the earlier diagnosis of aggressive PCa through routine biopsy assessment of eNOS, ERβ, and HIF-2α expression. Furthermore, proposing eNOS as a therapeutic target fosters innovative therapies for PCa with NO inhibitors, which are employed in preclinical trials in non-oncological diseases.
IntroductionIn the clinical management of prostate cancer (PCa), the second most common neoplasia in men worldwide (1), the ability to distinguish between aggressive and indolent forms of the disease is critical. Thus, therapeutic approaches would be substantially improved by the identification of the molecular mechanisms involved in tumor progression and the key biomarkers capable of improving patients' stratification at diagnosis, by discriminating between those at risk for relapse and those with indolent tumors not requiring further intervention beyond surgery.
A novel pathway of fenretinide-induced apoptosis is mediated by acidic sphingomyelinase, glucosylceramide synthase, and GD3 synthase, which may represent targets for future drug development. GD3 may be a key signaling intermediate leading to apoptosis via the activation of 12-lipoxygenase.
The p16INK4a is a cyclin-dependent kinase inhibitor that decelerates the cell cycle by inactivating the cyclindependent kinases involved in the phosphorylation of the retinoblastoma protein (RB). Expression of E6 and E7 oncogenes of high-risk (HR) human papillomavirus (HPV), affecting the RB-p16 pathway, leads to p16 upregulation. Although it is widely reported that p16 is overexpressed in a high percentage of preneoplastic lesions and in almost all carcinomas of the uterine cervix, protein upregulation and its correlation with HPV infection in low-grade lesions is still being debated. In this study, we investigated in parallel, p16 expression and HPV infection in 100 cervical biopsies (17 normal tissues, 54 CIN1, 10 CIN2, 11 CIN3, eight invasive squamous cancers). Results obtained demonstrated that none of the 17 normal cervical tissues, evaluated by immunohistochemistry, presented p16 positivity whereas, starting from CIN1 (31%) to CIN2 (90%), CIN3 (100%) and carcinomas (100%), a constant and significant increase of protein overexpression (Po0.0001) was observed. In addition, p16 overexpression consistently showed elevated sensitivity (84%) and specificity (98%) in detecting HR-HPV infection with a high positive predictive value (97%) and negative predictive value (86%). Of interest, 93% of the p16-positive CIN1 were also HR-HPV infected. Our findings confirmed that p16 overexpression is associated to high-grade precancerous lesions and cervical carcinomas, and further demonstrated that immunohistochemical evaluation of p16 may be a useful biomarker in identifying HR-HPVinfected low-grade lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.