The effect of concentration and temperature on the microstructure of aqueous micelles of carboxylic perfluoropolyether surfactants, with two perfluoroisopropoxy units in the chain (n2) that is chlorine-terminated, are studied by SANS for the ammonium and potassium counterions. The SANS spectra have been analyzed by a two-shell model for the micellar form factor and a screened Coulombic plus steric repulsion potential for the structure factor in the frame of the mean spherical approximation of a multiion system reduced to an effective one component macroions system (OCM). At 28 °C, in the surfactant concentration range 0.05 to 0.12 M, the micelles display spherical shape with inner core radius of 15 Å for both counterions, and interfacial layer thickness of 4 Å. At higher concentration, both counterions provide ellipsoidal micelles, with axial ratio 2 and a limiting dimension of 13 Å. A sharp increase of temperature up to 80 °C enables the ammonium salt at 0.2 M to rearrange its ellipsoidal micelles into spherical ones, while the micelles of the potassium salt remain ellipsoidal. In all cases, the micellar size distribution is extremely narrow and the average aggregation numbers, as well as the surface charge, are found to slightly differ for the two counterions upon variation of concentration and temperature, driving ionization degrees globally spanning from 0.3 to 0.5. The interfacial hydration, the surface potential and the area per polar head at the micellar surface are discussed too.
This paper reports a small-angle neutron scattering (SANS) characterization of perfluoropolyether (PFPE) aqueous micellar solutions with lithium, sodium, cesium and diethanol ammonium salts obtained from a chlorine terminated carboxylic acid and with two perfluoroisopropoxy units in the tail (n(2)). The counterion and temperature effects on the micelle formation and micellar growth extend our previous work on ammonium and potassium salts n(2) micellar solutions. Lithium, sodium, cesium and diethanol ammonium salts are studied at 0.1 and 0.2 M surfactant concentration in the temperature interval 28-67 degrees C. SANS spectra have been analyzed by a two-shell model for the micellar form factor and a screened Coulombic plus steric repulsion potential for the structure factor in the frame of the mean spherical approximation of a multicomponent system reduced to a generalized one component macroions system (GOCM). At 28 degrees C, for all the salts, the micelles are ellipsoidal with an axial ratio that increases from 1.6 to 4.2 as the counterion volume increases. The micellar core short axis is 13 A and the shell thickness 4.0 A for the alkali micelles, and 14 and 5.1 A for the diethanol ammonium micelles. Therefore, the core short axis mainly depends on the surfactant tail length and the shell thickness on the carboxylate polar head. The bulky diethanol ammonium counterion solely influences the shell thickness. Micellar charge and average aggregation number depend on concentration, temperature and counterion. At 28 degrees C, the fractional ionization decreases vs the counterion volume (or molecular weight) increase at constant concentration for both C = 0.1 M and C = 0.2 M. The increase of the counterion volume leads also to more ellipsoidal shapes. At C = 0.2 M, at 67 degrees C, for sodium and cesium micelles the axial ratio changes significantly, leading to spherical micelles with a core radius of 15 A, lower average aggregation number, and larger fractional ionization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.