A search for the Standard Model Higgs boson in proton–proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb−1 collected at √s=7 TeV in 2011 and 5.8 fb−1 at √s=8 TeV in 2012. Individual searches in the channels H→ZZ(⁎)→4ℓ, H→γγ and H→WW(⁎)→eνμν in the 8 TeV data are combined with previously published results of searches for H→ZZ(⁎), WW(⁎), bb and τ+τ− in the 7 TeV data and results from improved analyses of the H→ZZ(⁎)→4ℓ and H→γγ channels in the 7 TeV data. Clear evidence for the production of a neutral boson with a measured mass of 126.0±0.4(stat)±0.4(sys) GeV is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9, is compatible with the production and decay of the Standard Model Higgs boson
Abstract. The European Photon Imaging Camera (EPIC) consortium has provided the focal plane instruments for the three X-ray mirror systems on XMM-Newton. Two cameras with a reflecting grating spectrometer in the optical path are equipped with MOS type CCDs as focal plane detectors (Turner 2001), the telescope with the full photon flux operates the novel pn-CCD as an imaging X-ray spectrometer. The pn-CCD camera system was developed under the leadership of the Max-Planck-Institut für extraterrestrische Physik (MPE), Garching. The concept of the pn-CCD is described as well as the different operational modes of the camera system. The electrical, mechanical and thermal design of the focal plane and camera is briefly treated. The in-orbit performance is described in terms of energy resolution, quantum efficiency, time resolution, long term stability and charged particle background. Special emphasis is given to the radiation hardening of the devices and the measured and expected degradation due to radiation damage of ionizing particles in the first 9 months of in orbit operation.Key words. XMM-Newton -back illuminated pn-CCDs -radiation hardness -energy resolution -quantum efficiency -particle and flourescence background
IntroductionThe discovery of a new particle of mass about 125 GeV in the search for the Standard Model This Letter presents measurements of several properties of the newly observed particle, including its mass, production strengths and couplings to fermions and bosons, using diboson final states 1 : Monte Carlo (MC) samples used to model signal and background processes. The analyses of the three decay channels are presented in Sections 4-6. Measurements of the Higgs boson mass, production properties and couplings are discussed in Section 7. Section 8 is devoted to the conclusions. Data sample and event reconstructionAfter data quality requirements, the integrated luminosities of the samples used for the studies reported here are about 4.7 fb −1 in 2011 and 20.7 fb −1 in 2012, with uncertainties given in Table 1 (determined as described in Ref. [13]). Because of the high LHC peak luminosity (up to 7.7 × 10 33 cm −2 s −1 in 2012) and the 50 ns bunch spacing, the number of proton-proton interactions occurring in the same bunch crossing is large (on average 20.7, up to about 40). This "pile-up" of events requires the use of dedicated algorithms and corrections to mitigate its impact on the reconstruction of e.g. leptons, photons and jets. 0370-2693/
Previously published and as yet unpublished QCD results obtained with the ALEPH detector at LEP1 are presented. The unprecedented statistics allows detailed studies of both perturbative and non-perturbative aspects of strong interactions to be carried out using hadronic Z and tau decays. The studies presented include precise determinations of the strong coupling constant, tests of its avour independence, tests of the SU(3) gauge structure of QCD, study of coherence eects, and measurements of single-particle inclusive distributions and two-particle correlations for many identied baryons and mesons.
Fourth generation accelerator-based light sources, such as VUV and X-ray Free Electron Lasers (FEL), deliver ultra-brilliant (∼1012–1013 photons per bunch) coherent radiation in femtosecond (∼10–100 fs) pulses and, thus, require novel focal plane instrumentation in order to fully exploit their unique capabilities. As an additional challenge for detection devices, existing (FLASH, Hamburg) and future FELs (LCLS, Menlo Park; SCSS, Hyogo and the European XFEL, Hamburg) cover a broad range of photon energies from the EUV to the X-ray regime with significantly different bandwidths and pulse structures reaching up to MHz micro-bunch repetition rates. Moreover, hundreds up to trillions of fragment particles, ions, electrons or scattered photons can emerge when a single light flash impinges on matter with intensities up to 1022 W/cm2. In order to meet these challenges, the Max Planck Advanced Study Group (ASG) within the Center for Free Electron Laser Science (CFEL) has designed the CFEL-ASG MultiPurpose (CAMP) chamber. It is equipped with specially developed photon and charged particle detection devices dedicated to cover large solid-angles. A variety of different targets are supported, such as atomic, (aligned) molecular and cluster jets, particle injectors for bio-samples or fixed target arrangements. CAMP houses 4π solid-angle ion and electron momentum imaging spectrometers (“reaction microscope”, REMI, or “velocity map imaging”, VMI) in a unique combination with novel, large-area, broadband (50 eV–25 keV), high-dynamic-range, single-photon-counting and imaging X-ray detectors based on the pnCCDs. This instrumentation allows a new class of coherent diffraction experiments in which both electron and ion emission from the target may be simultaneously monitored. This permits the investigation of dynamic processes in this new regime of ultra-intense, high-energy radiation—matter interaction. After an introduction into the salient features of the CAMP chamber and the properties of the redesigned REMI/VMI spectrometers, the new 1024×1024 pixel format pnCCD imaging detector system will be described in detail. Results of tests of four smaller format (256×512) devices of identical performance, conducted at FLASH and BESSY, will be presented and the concept as well as the anticipated properties of the full, large-scale system will be elucidated. The data obtained at both radiation sources illustrate the unprecedented performance of the X-ray detectors, which have a voxel size of 75×75×450 μm3 and a typical read-out noise of 2.5 electrons (rms) at an operating temperature of −50 °C
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.