Reducing thermal noise from optical coatings is crucial to reaching the required sensitivity in next generation interferometric gravitational-wave detectors. Here we show that adding TiO 2 to Ta 2 O 5 in Ta 2 O 5 /SiO 2 coatings reduces the internal friction and in addition present data confirming it reduces thermal noise. We also show that TiO 2 -doped Ta 2 O 5 /SiO 2 coatings are close to satisfying the optical absorption requirements of second generation gravitational-wave detectors.
We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50 -1000 Hz and with the frequency's time derivative in the range ÿ1 10 ÿ8 Hz s ÿ1 to zero. Data from the fourth LIGO science run (S4) have been used in this search. Three different semicoherent methods of transforming and summing strain power from short Fourier transforms (SFTs) of the calibrated data have been used. The first, known as StackSlide, averages normalized power from each SFT. A ''weighted Hough'' scheme is also developed and used, which also allows for a multiinterferometer search. The third method, known as PowerFlux, is a variant of the StackSlide method in which the power is weighted before summing. In both the weighted Hough and PowerFlux methods, the weights are chosen according to the noise and detector antenna-pattern to maximize the signal-to-noise ratio. The respective advantages and disadvantages of these methods are discussed. Observing no evidence of periodic gravitational radiation, we report upper limits; we interpret these as limits on this radiation from isolated rotating neutron stars. The best population-based upper limit with 95% confidence on the gravitational-wave strain amplitude, found for simulated sources distributed isotropically across the sky and with isotropically distributed spin axes, is 4:28 10 ÿ24 (near 140 Hz). Strict upper limits are also obtained for small patches on the sky for best-case and worst-case inclinations of the spin axes.
We carry out two searches for periodic gravitational waves using the most sensitive few hours of data from the second LIGO science run. Both searches exploit fully coherent matched filtering and cover wide areas of parameter space, an innovation over previous analyses which requires considerable algorithm development and computational power. The first search is targeted at isolated, previously unknown neutron stars, covers the entire sky in the frequency band 160 -728.8 Hz, and assumes a frequency derivative of less than 4 10 ÿ10 Hz=s. The second search targets the accreting neutron star in the lowmass x-ray binary Scorpius X-1 and covers the frequency bands 464-484 Hz and 604-624 Hz as well as the two relevant binary orbit parameters. Because of the high computational cost of these searches we limit the analyses to the most sensitive 10 hours and 6 hours of data, respectively. Given the limited sensitivity and duration of the analyzed data set, we do not attempt deep follow-up studies. Rather we concentrate on demonstrating the data analysis method on a real data set and present our results as upper limits over large volumes of the parameter space. In order to achieve this, we look for coincidences in parameter space between the Livingston and Hanford 4-km interferometers. For isolated neutron stars our 95% confidence level upper limits on the gravitational wave strain amplitude range from 6:6 10 ÿ23 to 1 10 ÿ21 across the frequency band; for Scorpius X-1 they range from 1:7 10 ÿ22 to 1:3 10 ÿ21 across the two 20-Hz frequency bands. The upper limits presented in this paper are the first broadband wide parameter space upper limits on periodic gravitational waves from coherent search techniques. The methods developed here lay the foundations for upcoming hierarchical searches of more sensitive data which may detect astrophysical signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.