Research on the out-of-equilibrium dynamics of quantum systems has so far produced important statements on the thermodynamics of small systems undergoing quantum mechanical evolutions. Key examples are provided by the Crooks and Jarzynski relations: taking into account fluctuations in non-equilibrium dynamics, such relations connect equilibrium properties of thermodynamical relevance with explicit non-equilibrium features. Although the experimental verification of such fundamental relations in the classical domain has encountered some success, their quantum mechanical version requires the assessment of the statistics of work performed by or onto an evolving quantum system, a step that has so far encountered considerable difficulties in its implementation due to the practical difficulty to perform reliable projective measurements of instantaneous energy states. In this paper, by exploiting a radical change in the characterization of the work distribution at the quantum level, we report the first experimental verification of the quantum Jarzynski identity and the Tasaki-Crooks relationfollowing a quantum process implemented in a Nuclear Magnetic Resonance (NMR) system. Our experimental approach has enabled the full characterisation of the out-of-equilibrium dynamics of a quantum spin in a statistically significant way, thus embodying a key step towards the grounding of quantum-systems thermodynamics.The verification and use of quantum fluctuation relations [1][2][3] requires the design of experimentally feasible strategies for the determination of the work distribution following a process undergone by a system. In the quantum regime, the concept of work done by or on a system needs to be reformulated [4] so as to include ab initio both the inherent non-deterministic nature of quantum dynamics and the effects of quantum fluctuations. In this sense, work acquires a meaning only as a statistical expectation value W = W P(W) dW that accounts for the possible trajectories followed by a quantum system across its evolution, as formalised by the associated work probability distribution P(W) = n,m p 0 n p τ m|n δ W − ( m − n ) . In order to understand this expression, let us consider a quantum system initially at equilibrium at temperature T and undergoing a quantum process that changes its Hamiltonian asĤ(0) →Ĥ(τ) within a time period τ. Then, p 0 n is the probability to find the system in the eigenstate |n(0) ofĤ(0) (with energy n ) at the start of the protocol, while p τ m|n = | m(τ)|Û|n(0) | 2 is the conditional probability to find it in the eigenstate |m(τ) ofĤ(τ) (with energy m ) if it was in |n(0) at t = 0 and evolved under the action of the propagatorÛ. P(W) encompasses the statistics of the initial state (given by p 0 n ) and the fluctuations arising from quantum measurement statistics (given by p τ m|n ). One can define a backward process that, starting from the equilibrium state of the system associated withĤ(τ) and temperature T , implements the protocolĤ(τ) →Ĥ(0) and thus inverting the control sequence of the ...
Quantum metrology exploits quantum mechanical laws to improve the precision in estimating technologically relevant parameters such as phase, frequency, or magnetic fields. Probe states are usually tailored to the particular dynamics whose parameters are being estimated. Here we consider a novel framework where quantum estimation is performed in an interferometric configuration, using bipartite probe states prepared when only the spectrum of the generating Hamiltonian is known. We introduce a figure of merit for the scheme, given by the worst-case precision over all suitable Hamiltonians, and prove that it amounts exactly to a computable measure of discord-type quantum correlations for the input probe. We complement our theoretical results with a metrology experiment, realized in a highly controllable room-temperature nuclear magnetic resonance setup, which provides a proof-of-concept demonstration for the usefulness of discord in sensing applications. Discordant probes are shown to guarantee a nonzero phase sensitivity for all the chosen generating Hamiltonians, while classically correlated probes are unable to accomplish the estimation in a worst-case setting. This work establishes a rigorous and direct operational interpretation for general quantum correlations, shedding light on their potential for quantum technology. All quantitative sciences benefit from the spectacular developments in high-accuracy devices, such as atomic clocks, gravitational wave detectors, and navigation sensors. Quantum metrology studies how to harness quantum mechanics to gain precision in estimating quantities not amenable to direct observation [1][2][3][4][5]. The phase estimation paradigm with measurement schemes based on an interferometric setup [6] encompasses a broad and relevant class of metrology problems, which can be conveniently cast in terms of an input-output scheme [1]. An input probe state ρ AB enters a two-arm channel, in which the reference subsystem B is unaffected while subsystem A undergoes a local unitary evolution, so that the output density matrix can be written as ρ, where φ is the parameter we wish to estimate and H A is the local Hamiltonian generating the unitary dynamics. Information on φ is then recovered through an estimator functionφ constructed upon possibly joint measurements of suitable dependent observables performed on the output ρ φ AB . For any input state ρ AB and generator H A , the maximum achievable precision is determined theoretically by the quantum Cramér-Rao bound [3]. Given repetitive interrogations via ν identical copies of ρ AB , this fundamental relation sets a lower limit to the mean square error Var ρ φ AB ðφÞ that measures the statistical distance betweenφ and φ, Var ρ φ AB ðφÞ ≥ ½νFðρ AB ; H A Þ −1 , where F is the quantum Fisher information (QFI) [7], which quantifies how much information about φ is encoded in ρ φ AB . The inequality is asymptotically tight as ν → ∞, provided the most informative quantum measurement is carried out at the output stage. Using this quantity as a figu...
Developments in the thermodynamics of small quantum systems envisage non-classical thermal machines. In this scenario, energy fluctuations play a relevant role in the description of irreversibility. We experimentally implement a quantum heat engine based on a spin-1/2 system and nuclear magnetic resonance techniques. Irreversibility at microscope scale is fully characterized by the assessment of energy fluctuations associated with the work and heat flows. We also investigate the efficiency lag related to the entropy production at finite time. The implemented heat engine operates in a regime where both thermal and quantum fluctuations (associated with transitions among the instantaneous energy eigenstates) are relevant to its description. Performing a quantum Otto cycle at maximum power, the proof-of-concept quantum heat engine is able to reach an efficiency for work extraction (η ≈ 42%) very close to its thermodynamic limit (η = 44%).
Heat spontaneously flows from hot to cold in standard thermodynamics. However, the latter theory presupposes the absence of initial correlations between interacting systems. We here experimentally demonstrate the reversal of heat flow for two quantum correlated spins-1/2, initially prepared in local thermal states at different effective temperatures, employing a Nuclear Magnetic Resonance setup. We observe a spontaneous energy flow from the cold to the hot system. This process is enabled by a trade off between correlations and entropy that we quantify with information-theoretical quantities. These results highlight the subtle interplay of quantum mechanics, thermodynamics and information theory. They further provide a mechanism to control heat on the microscale.
The quantification of quantum correlations (other than entanglement) usually entails labored numerical optimization procedures also demanding quantum state tomographic methods. Thus it is interesting to have a laboratory friendly witness for the nature of correlations. In this Letter we report a direct experimental implementation of such a witness in a room temperature nuclear magnetic resonance system. In our experiment the nature of correlations is revealed by performing only few local magnetization measurements. We also compared the witness results with those for the symmetric quantum discord and we obtained a fairly good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.