Slow-and fast-twitch myofibers of adult skeletal muscles express unique sets of muscle-specific genes, and these distinctive programs of gene expression are controlled by variations in motor neuron activity. It is well established that, as a consequence of more frequent neural stimulation, slow fibers maintain higher levels of intracellular free calcium than fast fibers, but the mechanisms by which calcium may function as a messenger linking nerve activity to changes in gene expression in skeletal muscle have been unknown. Here, fiber-type-specific gene expression in skeletal muscles is shown to be controlled by a signaling pathway that involves calcineurin, a cyclosporin-sensitive, calcium-regulated serine/threonine phosphatase. Activation of calcineurin in skeletal myocytes selectively up-regulates slow-fiber-specific gene promoters. Conversely, inhibition of calcineurin activity by administration of cyclosporin A to intact animals promotes slow-to-fast fiber transformation. Transcriptional activation of slow-fiber-specific transcription appears to be mediated by a combinatorial mechanism involving proteins of the NFAT and MEF2 families. These results identify a molecular mechanism by which different patterns of motor nerve activity promote selective changes in gene expression to establish the specialized characteristics of slow and fast myofibers.
It is now well established that stromal interaction molecule 1 (STIM1) is the calcium sensor of endoplasmic reticulum stores required to activate store-operated calcium entry (SOC) channels at the surface of non-excitable cells. However, little is known about STIM1 in excitable cells, such as striated muscle, where the complement of calcium regulatory molecules is rather disparate from that of non-excitable cells. Here, we show that STIM1 is expressed in both myotubes and adult skeletal muscle. Myotubes lacking functional STIM1 fail to show SOC and fatigue rapidly. Moreover, mice lacking functional STIM1 die perinatally from a skeletal myopathy. In addition, STIM1 haploinsufficiency confers a contractile defect only under conditions where rapid refilling of stores would be needed. These findings provide insight into the role of STIM1 in skeletal muscle and suggest that STIM1 has a universal role as an ER/SR calcium sensor in both excitable and non-excitable cells.
Peroxisome proliferator-activated receptor ␥ co-activator 1␣ (PGC-1␣) promotes mitochondrial biogenesis and slow fiber formation in skeletal muscle. We hypothesized that activation of the p38 mitogen-activated protein kinase (MAPK) pathway in response to increased muscle activity stimulated Pgc-1␣ gene transcription as part of the mechanisms for skeletal muscle adaptation. Here we report that a single bout of voluntary running induced a transient increase of Pgc-1␣ mRNA expression in mouse plantaris muscle, concurrent with an activation of the p38 MAPK pathway. Activation of the p38 MAPK pathway in cultured C2C12 myocytes stimulated Pgc-1␣ promoter activity, which could be blocked by the specific inhibitors of p38, SB203580 and SB202190, or a dominant negative p38. Furthermore, the p38-mediated increase in Pgc-1␣ promoter activity was enhanced by increased expression of the downstream transcription factor ATF2 and completely blocked by ATF2⌬N, a dominant negative ATF2. Skeletal muscle-specific expression of a constitutively active activator of p38, MKK6E, in transgenic mice resulted in enhanced Pgc-1␣ and cytochrome oxidase IV protein expression in fast-twitch skeletal muscles. These findings suggest that contractile activity-induced activation of the p38 MAPK pathway promotes Pgc-1␣ gene expression and skeletal muscle adaptation.
Endurance exercise training promotes mitochondrial biogenesis in skeletal muscle and enhances muscle oxidative capacity, but the signaling mechanisms involved are poorly understood. To investigate this adaptive process, we generated transgenic mice that selectively express in skeletal muscle a constitutively active form of calcium/calmodulin-dependent protein kinase IV (CaMKIV*). Skeletal muscles from these mice showed augmented mitochondrial DNA replication and mitochondrial biogenesis, up-regulation of mitochondrial enzymes involved in fatty acid metabolism and electron transport, and reduced susceptibility to fatigue during repetitive contractions. CaMK induced expression of peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1), a master regulator of mitochondrial biogenesis in vivo, and activated the PGC-1 gene promoter in cultured myocytes. Thus, a calcium-regulated signaling pathway controls mitochondrial biogenesis in mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.